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Abstract
Research motives
In general, decisions appear to be encumbered by subjectivity which is problematic 
for their validation. In this work, however, we do aim for a validation of decisions. A
maintenance policy may seem to be a suitable means of validation because it triggers 
decisions at a high rate and because the abundant policy violations are typically also 
recorded. These policy violations may therefore give a glimpse into the counterfactual 
reality that maintenance policy compliance intends to avoid in the first place. This 
work demonstrates the feasibility of this unconventional approach to maintenance 
policy validations. It would be naïve to expect a decisive maintenance policy 
validation, but at least we purport to improve the justifiability of maintenance.

Approach
We take the viewpoint that inference precision follows from the choice of an 
argument, an operationalisation and a sampling procedure. We develop a number of 
candidate arguments and samples. Our iterative journey along these candidates leads
to an improved inference.

Our contribution
- We have implemented a maintenance policy validation by a causal argument 

and a sample from a realistic case study at an improved inference precision;
- We have implemented a maintenance policy validation that relies on evidence 

about policy violations that from a normative decision theoretical perspective
appears to be new;

- We have implemented alternatives for conventional maintenance performance 
indicators that enable more precise causal inferences in the case study.

Conclusion
To validate a maintenance policy by the proposed approach is very difficult if the 
only evidence available is from an organisation’s recording routines. Therefore, an 
explicit justification of maintenance cannot easily be obtained. However, the 
proposed approach showed how to improve the associated inference precision in the 
specific case study. 

Practical implications
This work reveals that conventional maintenance performance indicators are typically 
insufficient for capturing the variations which will allow us to learn about the system 
behaviour. We propose and implement some construction rules for maintenance 
performance indicators that enable us to reveal prima facie causalities from recording 
routines. Although these construction rules appear to be straightforwardly 
implementable, they are often violated in the practice of maintenance performance 
measurement. We therefore argue that organisations could potentially enhance
support of their maintenance policy assessments through recording routines; possibly
by validating some formal argument, as we do in this work, or else by simply asking: 
“Where does this peak come from?”.
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Samenvatting
Onderzoeksmotieven
Besluitvorming is subjectief waardoor een validatie lastig is. Dit werk poogt
desondanks besluiten te valideren. Een onderhoudsbeleid kan een geschikte casus 
voor een dergelijke validatie blijken omdat het besluiten met een hoge frequentie 
genereert terwijl de veelvuldig voorkomende beleidsovertredingen eveneens worden 
geregistreerd. Deze beleidsovertredingen kunnen ons toegang geven tot een realiteit 
die men had willen vermijden met het onderhoudsbeleid. Dit onderzoek kan de 
praktische toepasbaarheid aantonen van deze onconventionele manier om een 
onderhoudsbeleid te valideren. Een onweerlegbare validatie van een 
onderhoudsbeleid is niet te verwachten, maar we kunnen op zijn minst proberen 
onderhoud preciezer te valideren.

Aanpak
We stellen dat de precisie van een wetenschappelijke redenering volgt uit de keuze 
voor een argument, een kwantificering en een steekproeftrekking. We ontwikkelen
een aantal opties voor het argument en de steekproef. Onze iteratieve zoektocht leidt
tot een verbeterde precisie.

Onze bijdrage
- We hebben op basis van de registratieroutines in een bepaalde casus een 

onderhoudsbeleid nauwkeuriger gevalideerd met een causaal argument;
- We hebben op basis van beleidsovertredingen in een bepaalde casus een 

onderhoudsbeleid gevalideerd op een wijze die vanuit het perspectief van de 
besluitvormingstheorie vernieuwend lijkt;

- We hebben alternatieven voor conventionele onderhoudsprestatie-indicatoren 
toegepast waarmee causale verbanden beter te herkennen zijn.

Conclusie
Het valideren van een onderhoudsbeleid met behulp van registratieroutines is erg 
lastig volgens de voorgestelde aanpak. Het belang van onderhoud is daarom niet 
eenvoudig te expliciteren in de praktijk. Echter, in een bepaalde casus hebben we met 
de voorgestelde aanpak laten zien hoe de precisie van de validatie aan te scherpen is.

Praktische toepasbaarheid
Dit onderzoek toont aan dat de procesvariaties om het systeemgedrag te leren kennen
vaak worden uitgemiddeld in conventionele onderhoudsprestatie-indicatoren. Onze
constructieregels voor onderhoudsprestatie-indicatoren stellen ons echter in staat 
prima facie causaliteit te herkennen in registratieroutines. Ondanks het feit dat deze 
constructieregels gemakkelijk te implementeren zijn, worden ze in de 
onderhoudspraktijk zelden toegepast. We stellen daarom dat organisaties hun 
onderhoudsbeleid potentieel beter kunnen ondersteunen met registratieroutines; hetzij
door de validatie van een formeel argument, zoals wij doen in dit onderzoek, of door 
gewoon te vragen: “Waar komt die piek vandaan?”.
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1. Introduction

1.1 Problem statement

For thousands of years, mankind has been developing technology for all kinds of 
purposes. Gradually, technology has become an indispensable part of our daily life. We 
almost seem to forget how much we rely on properly functioning technology. But 
occasionally, we are confronted with failures that disrupt the course of our life. Bit by 
bit, we learnt that properly functioning technology requires the continuous effort which
we now call maintenance.

Until the Second World War, decisions to carry out maintenance were often made on an 
ad hoc basis. Evident failures were restored and preventive maintenance was often only 
justified by some ambiguous notion that “grease is cheaper than steel”. Our acceptance 
of failures diminished during the 20th century and the appropriateness of coincidental 
maintenance became subject to increasing doubts. We developed procedures like 
reliability centred maintenance (Nowlan & Heap, 1978), (Moubray, 2004) for 
maintenance policy assessments that established decision rules for time based 
maintenance, condition based maintenance, corrective maintenance and modifications. 
The maintenance policy that includes all these decision rules can exert influence on a
future yet to be observed, but it cannot manipulate the past. Maintenance policy 
assessments therefore typically apply some modus ponens reasoning about the future 
from antecedents about the past. So, a maintenance policy assessment prospectively
reasons about an unobserved future, whereas we will try to justify it retrospectively.
Maintenance policy assessments predominantly rely on expert judgement about the 
prospective future. However, we take the viewpoint that this prospective future should 
materialise to retain maintenance policy assessments as meaningful to practitioners and 
empirical scientists. 

In this work, we will not develop another framework for a maintenance policy 
assessment. We simply depart from decisions to carry out maintenance as they occurred,
irrespective of the maintenance policy that triggered them. Decisions are choices for 
actions and maintenance actions differ from other actions by their intention to contribute 
to an item’s state “in which it can perform a required function” as stated in the 
following definition of maintenance:

The combination of all technical and administrative actions, including supervision 
actions, intended to retain an item in, or restore it to, a state in which it can perform 
a required function (CEN, 2001), (IEC, 1990).

In this work, we wonder whether this intention of maintenance is observable in 
retrospect. In other words, did decisions to carry out maintenance contribute to 
functionality in an observable way? We seek for an inference that gives a better answer
to this question than the subjective answers currently available.
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About 4% of The Netherlands Gross Domestic Product is annually spent on 
professional maintenance (NVDO, 2011). However, it seems common sense that 
maintenance should not be justified by its resource costs. Rather, it should be justified 
by its contribution to functionality. Is the maintenance sector capable of effectively 
justifying its existence by its contribution to functionality? Possibly, we could be more 
precise here.

If functionality were entirely random, like tossing a fair dice, we would abandon any 
hope for control. Praying would then be as effective as applying a maintenance policy to 
achieve functionality. The proposition that functionality could be uncontrollable appears 
to be counterintuitive, but observing this functionality effect through recording routines 
has, to the best of our knowledge, been ignored up until now. Maintenance optimisation
methods often presume that functionality is controllable by a maintenance policy, but 
they often fail to validate this dependence. Deducing optima from presumptions is not 
necessarily bad, but should we continue to ignore empirical validation? We pose that 
correspondence with reality is essential to retain maintenance policy assessments as a 
scientific discipline and as meaningful to practitioners. We should not resort to a 
maintenance sector that regards its contribution to functionality as though it were some 
kind of metaphysical belief. We therefore seek a maintenance policy validation.

The justifiability of maintenance relies on the presumption that uncertainty about 
functionality is epistemic. Epistemic uncertainty is due to things we could know in 
principle but not in practice. So, we can effectively reduce epistemic uncertainty by 
increasing our knowledge. We are unaware of attempts to observably reduce uncertainty 
about functionality through knowledge about a maintenance policy. Prognostic methods
aim to reduce epistemic uncertainty about a remaining life, but they conventionally 
reason from physical variables rather than from the applied maintenance policy. We 
suspect that the justifiability of maintenance may not follow directly from some well-
explored prognostic method:

- Firstly, because prognostics may already effectively reason from associated 
symptoms whereas we require a causal functionality effect of a maintenance 
policy. We therefore anticipate that we need to operationalise a notion of 
causality.

- Secondly, because common sense about operationalising some physical 
variables typically exceeds common sense about operationalising a maintenance 
policy. This common sense is essential for any argument to be compelling for 
reality. Otherwise the argument remains some abstract formalism.

- Thirdly, because common sense about physical laws typically exceeds common 
sense about models for man-machine interactions. We therefore anticipate that 
we lack in-depth knowledge about a “law” that relates a maintenance policy to 
functionality. 

In this work, we will extensively discuss the evidence and the presumptions that yield
an eventual justifiability of maintenance.

Normative decision theory is known to suffer validation issues. Still, decisions to carry 
out maintenance may appear to be a promising special case because they (i) comprise
many routine decisions (ii) whose policy compliance is typically recorded and (iii)
whose functionality effect may straightforwardly follow from an unambiguous physical 
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variable. In this work, we explore to what extent the generic validation concerns of 
normative decision theory are surmountable in maintenance cases.

Unlike most research on maintenance policies, we do not intend to manipulate our 
prospective future by some improved maintenance policy. This attempt to justify 
maintenance by observing it as it occurs initially just serves a philosophical objective to 
more precisely approximate reality. However, acquiring more precise knowledge about 
the causal effects of maintenance may have practical implications. We will show that 
recording routines could potentially support decisions in a better way.

1.2 Research question

This work departs from a need to justify maintenance. We therefore raise a very simple 
question:

Is maintenance justified?

In principle, the answer to this question may be:
- A confirmation at an acceptable inference precision: maintenance is justified;
- A negation at an acceptable inference precision: maintenance is not justified;
- Neither a confirmation, nor a negation at an acceptable inference precision:

maintenance remains unjustifiable.
Similar to Gauch (2002), Lakatos (1976) and Popper (2002), we adopt a viewpoint that 
certainty about scientific claims is lacking. So, we deem that in the end we will have to 
conclude that “maintenance remains unjustifiable”. Resorting to unjustifiability neither 
contributes to science nor to better maintenance policies, but at least we can try to move 
further away from unjustifiability. As inference is the process of deriving logical 
conclusions from known or presumed propositions, the inference precision indicates a 
degree of certainty about the justification of maintenance here. We therefore pursue an 
improved inference precision. So, the title of this work reflects our viewpoint on what 
science can claim about maintenance and our objective.

1.3 Aim

The research question in Section 1.2 alluded to the problem, but it was not very specific 
about the scope of this work. In this section, we will outline how we intend to respond 
to the research question.

Maintenance is not something that just happens, it typically originates from conscious 
decisions to pursue a better future. Figure 1 shows that a decision “to maintain or not to 
maintain” provides access to a future with or without maintenance respectively. A 
decision maker who is indifferent towards a future with or without maintenance would 
not bother about it. However, we typically do prefer either of these two futures. So, any 
decision to carry out maintenance originates from some preference for a future with 
maintenance. Normative decision theory conventionally represents a preference by a
utility and the challenge here is to make this subjective preference observable.
Maintenance intends to intervene in the “natural” course of functionality by definition 
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(IEC, 1990), (CEN, 2001). We therefore take the viewpoint that this intention should 
materialise to retain maintenance policy assessments so they are meaningful to
practitioners and scientists.

We posit that decisions to carry out maintenance usually result from collaboration 
within a group. Performance indicators may then enable decision makers to align their
individual preferences with the group’s preference. Eventually, these performance 
indicators reflect common sense about the pursued group’s preference to be attained 
through a maintenance policy.

To maintain 
or 

NOT to maintain

A future with
maintenance

A future without 
maintenance

Preference

Preference

Figure 1 Discrete choice representation of a decision to carry out maintenance

Maintenance performance indicators reflect to what extent some subjective aspiration 
level has been met. Maintenance performance indicators are typically classified as 
leading or lagging. Leading indicators quantify maintenance policy compliance and are 
considered as causal for the future (Figure 1). Lagging indicators quantify the attributes 
of this future on which we may ground the group’s preference. Although the intuition 
that leading indicators cause lagging indicators is widespread, we are unaware of a 
validation of this intuition. 

Lagging maintenance performance 
indicator (result indicator):

“functionality” K

“resource costs” C

Leading maintenance performance 
indicator (enabling indicator):

“maintenance policy compliance” L

Table 1 Simplified representation of a maintenance scorecard

Table 1 is a simplified representation of a maintenance scorecard. In practice, K,C and 
L are multidimensional vectors. The utility of a maintenance policy is built on the 
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lagging indicators in Table 1 and is represented by UL(C,K). This utility could be seen 
as some cost-effectiveness measure.

The achieved maintenance performance relies on “doing” as much as on “choosing”. 
Normative decision theory poses that “choosing” and “doing” coincide and correspond. 
Then, maintenance policy violations would be non-existent. However, leading 
performance indicators for maintenance policy compliance L often show violations that 
may provide access to the counterfactual reality that maintenance policy compliance is 
hoping to avoid.

If “choosing” and “doing” were indistinguishable, maintenance resource costs C would 
be a definitional effect rather than a causal effect of a maintenance policy. We simply
ignore any debate on whether resource costs causally or logically depend on a 
maintenance policy. Instead, we confine ourselves to a validation of a causality between
maintenance policy compliance L and functionality K. So, we aim to be more precise 
about the truth or falsehood of the following proposition:

Maintenance policy compliance causes functionality

We ignore causal inferences that require experimental research. For operating 
organisations, well-designed experiments are often unattainable, whereas recording 
routines can be obtained in an efficient manner. We therefore implement some recent 
ideas about causal inferences from evidence collected by observational research. These 
causal inferences depart from known antecedents and conclusions and they are labelled 
as maintenance policy validations here. To the best of our knowledge, causal inferences 
between leading and lagging maintenance performance indicators are unprecedented. 
The intuition here is that a maintenance crew intends to pursue functionality by
maintenance policy compliance in line with the definition of maintenance (CEN, 2001),
(IEC, 1990). The proposed maintenance policy validation may reveal this intuition at an 
increased inference precision. A causality extends to a statistical association by 
providing the essential explanation to support decisions; i.e. we may control prospective 
effects by manipulating a cause rather than by manipulating just an associated variable.
This work may reveal some practical insights to enhance decision support from 
recording routines. 

1.4 Approach

The approach departs from an operationalisation of inference precision that allows us to 
compare inferences. We have not found common sense about a univariate representation 
of inference precision. We just arbitrarily define inference precision by the five 
inference objectives shown in Table 2.

Choices Inference objective
Choice of an argument Valid argument

Functional relation
Choice of an operationalisation Common sense evidence

Universal argument
Choice of a sampling procedure Decidable argument

Table 2 Survey of choices and inference objectives
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To control these inference objectives, we confine ourselves to three choices:
- A choice of an argument;
- A choice of an operationalisation;
- A choice of a sampling procedure.

Gauch (2002), Lakatos (1976) and Popper (2002) suggest that a pursuit of inference 
precision comprises some trial and error trajectory. We do not believe that this decision 
problem can be decomposed by optimising the choices in Table 2 separately. Rather, we 
will iteratively combine arguments, operationalisations and sampling procedures. In 
Section 2.2, we will demonstrate the assessment of inference precision in a simplified 
fictitious example. In Section 3.6, we will better embed our approach in related fields of 
research.

We expect to be unable to find a combination of an argument, an operationalisation and 
a sampling procedure that entirely fulfils all inference objectives. We therefore resort to 
an attainable trade-off that may be acceptable. Nor do we pretend that the maintenance 
policy validation is optimal because we simply cannot assess all candidate arguments, 
operationalisations and sampling procedures. We just pursue the best inference 
precision among an arbitrary set of candidates.

We will introduce and discuss the inference objectives in Section 1.4.1. The remainder 
of Section 1.4 introduces the choice of an argument, the choice of an operationalisation
and the choice of a sampling procedure.

1.4.1 Introduction to the inference objectives

We propose to decompose inference precision into the five inference objectives from
Table 2. Each of the inference objectives will now be introduced separately.

Valid argument
This inference objective assesses whether a conclusion deductively follows from the 
other propositions of the argument. The conclusion of an invalid argument is not a 
necessary consequence from the other propositions of the argument. Arguments are the 
vehicles along which we reason, as we will further introduce in Section 2.1.

Functional relation
This inference objective assesses whether the antecedents map to a unique conclusion. 
Any argument may relate its antecedents to some conclusions, but an argument that 
maps its antecedents to a single conclusion is more precise. This relation (or model)
between antecedents and conclusion is often presumed and controversial.

Common sense evidence
This inference objective assesses common sense about the evidence. Without 
interpretation, an argument remains a mathematical formalism that cannot claim 
anything about reality. The operationalisation ties an argument to reality. In principle, 
we are free to choose our operational definitions but if they lack common sense, others 
would easily refute the inference. For physical properties, a common sense 
operationalisation is often straightforward. Moreover, physical properties like mass, 
volume or time are often quantifiable by a single continuous variable. Notions like 
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maintenance policy compliance and functionality comprise some subjective 
requirements and their assessment may only follow from some arbitrary (multi-
dimensional) vector of quantities. Inference precision may then suffer from a lack of 
common sense about the operationalisation (a construct validity issue).

Universal argument
This inference objective assesses whether the argument holds universally, i.e. holds for 
the entire population. In practice, we only have a stratified sample which hampers the 
inference of claims that are beyond the sample. A delimited set of recording routines 
leaves many background variables unobserved that could potentially explain an 
association within these recording routines. Therefore, this inference objective is 
important for the essential causal explanation we need for the maintenance policy 
validation. We do not expect to observe all relevant background variables. This 
inference objective seems therefore unattainable. We typically alleviate this concern by 
randomly assigning treatments and an informed selection of the antecedents in the 
argument.

Decidable argument
This inference objective assesses whether the truth or falsehood of presumptions is 
identifiable. Ideally, an argument is deductive and it comprises only one presumption
while all other propositions are true. The presumption then automatically follows from 
the argument, which is then considered to be decidable. In Chapter 4, we will show that 
arguments often comprise several presumptions. Then, the argument is not decisive
about the truth or falsehood of these presumptions. We expect that we will unavoidably 
face presumptions whose truth or falsehood is not identifiable from some stratified 
sample.

1.4.2 Choice of an argument

Arguments are essential for weighing up pros and cons of a particular presumption. 
Many arguments may reason about a particular presumption, but this does not imply 
that we should be indifferent regarding the choice of the argument.

In Chapter 4, we will present some conventional arguments that differ in their
presumptions. In Section 4.5, we will review these arguments on their potential 
inference precision. In the absence of evidence, this review will only be preliminary. In 
Section 5.3, we will confront these arguments with a real sample of operationalised 
evidence and in Table 21, we will assess the inference precision of the maintenance 
policy validation by the candidate arguments and some given evidence. The challenge 
of the argument selection will be:

to achieve inference precision by choosing an adequate argument.

1.4.3 Choice of an operationalisation

Without an interpretation, an argument reduces to a mathematical formalism that cannot 
claim anything about reality. So, the argument requires an interpretation. An 
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operationalisation specifies the evidence; i.e. an operationalisation determines the 
argument’s applicability. We provide some definitions:

A policy specifies a decision rule to be used at all decision epochs (Puterman, 2005).

A “decision” in the above will be defined as:

A decision is a choice of an action that causes the future

An “action” in the above will be confined to a maintenance action by:

Maintenance is the combination of all technical and administrative actions, 
including supervision actions, intended to retain an item in, or restore it to, a state 
in which it can perform a required function (CEN, 2001), (IEC, 1990).

And finally, the item’s state in the above will be defined as functionality in this work:

Functionality is an ability of an item to perform a required function.

These definitions suggest that a maintenance policy intends to contribute to 
functionality but this contribution is not observable by definition. Otherwise, this work
would be superfluous. These definitions just strengthen a belief that maintenance policy 
compliance should cause functionality and that maintenance should be justifiable in the 
end. 

To attain the aim of this work, we need to establish the truth about:
- Maintenance policy compliance;
- Functionality;
- Causality.

Since truth appears to be unattainable, we resort to operational definitions that make 
these notions observable by common sense at least. In Section 3.2, we will seek 
common sense about maintenance policy compliance and functionality by exploring a
few maintenance performance measurement practices. In Section 5.1, we will follow an 
organisation’s convention to operationalise maintenance policy compliance and 
functionality. This convention corresponds with the practices found in the literature
about maintenance performance measurement.

In Section 2.3, we will introduce the difficulties in operationalising causality. We 
therefore resort to a notion of prima facie causality, i.e. a less strict “causality at first 
sight”. Prima facie causality has been frequently applied under observational research 
constructs in economics, ecology or biology. We implement prima facie causality in a 
maintenance decision making context.

We will specifically explore the inferences that presume causality between a policy and 
an effect in Section 3.1 and Section 3.3. In Section 3.4 and Section 3.5 respectively, we 
will explore inferences that explain or predict functionality. All these explorations will 
raise concerns about a maintenance policy validation. Still, we will try to address these 
concerns in the case study in Chapter 5. We intend to mitigate controversy about the 



9

evidence for a maintenance policy validation. The challenge of the operationalisation 
will be:

to achieve inference precision by establishing common sense about the evidence.

1.4.4 Choice of a sampling procedure

In Section 2.3, we will explain that experimental research constructs are generally more 
compelling for causality than observational research constructs. However, we will stick
to evidence derived from an organisation’s recording routines to serve the efficiency of 
collecting evidence. To pursue inference precision under an observational research
construct, we will still be able to choose the sampling rate and the scale of the 
operationalised evidence.

In Section 3.2, we will criticise the sampling procedure of conventional maintenance 
performance indicators while proposing some construction rules. In Section 5.2, we will 
compose alternative samples that represent the organisation’s common sense about 
maintenance performance. In Section 5.3, we will try to validate a maintenance policy 
from these samples. So finally, we intend to enhance inference precision by an informed 
choice of a sampling rate and a scale. The challenge of the selection of a sampling 
procedure will be:

to achieve inference precision by composing a suitable sample, given the constraint 
on an observational research.

1.5 Outline

This thesis is organised as follows. In Chapter 2, the fundamentals of (causal) inferences
will be introduced. Chapter 3 will then position the proposed maintenance policy 
validation within related areas of research. More specifically, the perspectives of 
normative decision theory, maintenance performance measurements, maintenance 
policy assessments, diagnostics and prognostics will be reviewed. In Section 3.6, we 
will survey the lessons learned regarding our approach. In Chapter 4, the selection of a 
suitable argument will be discussed. For that purpose, four candidate arguments will be
defined and each of them will be evaluated with respect to the inference objectives from
Section 1.4.1. In the absence of empirical evidence, this assessment will only be 
preliminary. Chapter 5 will be concerned with the implementation, discussing both the 
operationalisation in Section 5.1 and the sampling procedure in Section 5.2. Section 5.3
and Section 5.4 will proceed with the validation of the four arguments using a real case 
study and Section 5.5 will discuss the influence of background variables. The work will
then be discussed critically in Chapter 6, where the results and the contribution will be 
summarised. Finally, Chapter 7 will arrive at the conclusion and it will indicate
directions for future research together with some practical implications.

Table 2 surveyed three choices that all require a theoretical background, a detailed 
discussion and a validation using a real case, but which also need to be treated in an 
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integral and iterative way. They are all addressed in several chapters of this work, rather 
than discussing them in separate chapters.
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2 Preliminary to inference

This chapter will revisit some fundamentals on scientific inference and causal inference,
but it will also describe the approach followed in this work to obtain an improved 
inference precision.

In Section 2.1, we will present a refresher on the logic of reasoning. In the context of 
this work, we will explain that stratified sampling hampers inference precision of 
universal scientific propositions. We will illustrate how the choice of an argument may 
influence inference precision.

In Section 2.2, we will illustrate our approach to inference precision. This illustration 
will be simplified by its omission of operationalisation issues and sampling issues.
However, critique on the selected arguments at some given operationalisation and 
sampling procedure will similarly apply to the maintenance policy validation.

In Section 2.3, we will introduce causal inference. We will explain that causal 
inferences are particularly problematic, given the constraint on an observational 
research. We will therefore resort to a notion of prima facie causality (Granger, 1980)
that uses knowledge of time to raise credence in causality. 

2.1 Introduction to scientific inference

An argument is essential for any reasoning. An argument is any group of propositions of 
which one is claimed to follow from the others, which are regarded as providing support 
or grounds for the truth of that one (Copi & Cohen, 2009). We categorise the 
propositions of an argument in an antecedent, a model and a conclusion. Figure 2
depicts an example of an argument with an antecedent proposition P1, a model M1 and 
a conclusion C1.

We provide the following definitions:
- Let an information set V comprise the values of all antecedents and the 

conclusion. In Figure 2, V={l,k}. 
- Let the evidence comprise all known propositions.
- Let modus ponens be a model based inference of a conclusion from evidence 

about the antecedent and the model; for a modus ponens inference by the 
argument in Figure 2, the evidence is (P1,M1).

- Let modus tollens be a model based inference of an antecedent from evidence 
about the conclusion and the model; for a modus tollens inference by the 
argument in Figure 2, the evidence is (M1,C1). 

- Let a history based inference be an inference of a model from evidence about the 
antecedent and the conclusion; for a history based inference by the argument in
Figure 2, the evidence is (P1,C1). 
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- Let a validation be an inference of a claim regarding the soundness of an
argument; for a typical validation of the argument in Figure 2, the evidence is 
(P1,C1) and the model M1 is presumed.

- Let a replication be a duplication of an experiment. In Figure 2, a replication is 
any observed information set V={l,k} that has been generated by an identical 
model M1.

P1 =
;Let maintenance policy compliance be “l”

M1 ( = ) ( = )
;If maintenance policy compliance is “l”, then functionality is “k”

C1 =
;Therefore functionality is “k”, follows from P1,M1.

In this fictitious illustration, the evidence is a time series (l,k)[1,t]={{l,k},…} that only comprises two 
information sets: (l,k)[1,2]={{1,1},{1,2}}. Below, we comment on inference precision with respect to 
this specific spatiotemporally constrained evidence:

Valid argument: Yes, because C1 is a necessary consequence of P1,M1.
Functional relation: Yes, because M1 is a functional relationship.
Common sense evidence: In this fictitious example, we presume common sense about the 

interpretation of l as “maintenance policy compliance” and of k as 
“functionality”.

Universal argument: Yes, the sample (l,k)[1,2]={{1,1},{1,2}} universally refutes the argument.
Decidable argument: Yes, only the presumed model M1 is controversial.

Figure 2 Example of a deductive argument with a functional model

A valid argument is an argument whose conclusion C1 is a necessary consequence of its 
antecedent P1 and model M1. A monotonic deductive argument is a valid argument that 
infers universal claims that are unsusceptible to new evidence (Bandyopadhyay & 
Forster, 2011). In science, we aim for sound monotonic deductive arguments but we 
typically only have a spatiotemporally constrained sample of evidence (Gauch, 2002),
(Popper, 2002). Such a stratified sample only allows for an existential claim regarding 
the soundness of an argument that is susceptible to new evidence.

For a typical validation of the argument in Figure 2, model M1:k=f(l) has been 
presumed arbitrarily whereas we only know a stratified sample of the evidence about 
proposition P1 and conclusion C1. The stratified sample (l,k)[1,2]={{1,1},{1,2}}
decisively refute the argument in Figure 2 by a single counterexample, but another 
sample might have existentially confirmed it. Existentially because new evidence may 
easily overthrow this confirmation. Common sense about the proposition P1 and the 
conclusion C1 is essential here. Otherwise we may, for example, adopt an ad-hoc 
auxiliary hypothesis asserting that “this counterexample is not genuine evidence” upon
any refutation that we find. This kind of posterior ad hocery prevents an empirical 
validation of any argument (Popper, 2002), (Lakatos, 1976).

We intend to enhance the justifiability of maintenance by a quest for its observable 
effects. In Section 1.3, we confined ourselves to a quest in order to be more precise
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about:

Maintenance policy compliance causes functionality.

The following example illustrates that the choice of an argument matters:
- An argument like Figure 2 presumes some model M1:l k=f(l). If the argument

in Figure 2 appears to be sound, we would confirm that maintenance policy 
compliance L causes functionality K (Section 1.3) and we may exactly predict 
functionality K from maintenance policy compliance L. If the argument in 
Figure 2 appears to be refuted, we could not claim much about the existence of a 
causality between maintenance policy compliance L and functionality K in 
general and nor could we predict functionality K from maintenance policy 
compliance L. 

- Another argument may presume independence between maintenance policy 
compliance L and functionality K. This argument does not enhance our 
capability to predict functionality K. However, both a confirmation and a
refutation of this independence argument are decisive about the causality 
between maintenance policy compliance L and functionality K (Section 1.3).

The example above illustrates that if the argument in Figure 2 appears to be unsound, 
we cannot be very precise about the causality between maintenance policy compliance 
L and functionality K. Then, a less precise independence argument that lacks predictive 
capabilities may still better serve inference precision. In this work, we will put forward 
candidate arguments that we compare on inference precision regarding their claim about 
the causality between maintenance policy compliance L and functionality K.

2.2 Assessment of inference precision

This section will illustrate the assessment of the inference precision that we proposed in 
Section 1.4. Our approach comprised a choice of an argument, an operationalisation and 
a sampling procedure. Like in many choice problems, considering all possible options 
for the argument, the operationalisation and the sampling procedure would become 
intractable. We will therefore delimit, in this tentative example as well as in this work,
the number of options that we will consider.

Choice of a sampling procedure.
Since an effect does not precede its cause in time, knowledge about time may attribute 
to causality in an observational research. We therefore choose a time series 
(l,k)[1,t]={{l1,k1},…, {lt,kt}} rather than some cross-sectional data (l,k). In this tentative 
example we stick to the sample (l,k)[1,2]={{1,1},{1,2}} and we will not develop other
options regarding the sampling rate, or the scale of the variables as we will do in this 
work.

Choice of an operationalisation.
In this tentative illustration, we also omit an operationalisation of maintenance policy 
compliance L and functionality K. We just presume that the evidence 
(l,k)[1,2]={{1,1},{1,2}} genuinely reflects common sense about maintenance policy 
compliance and functionality. In addition, we defer the operationalisation of causality to 
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Section 2.3. We therefore ignore the inference objective regarding “common sense 
evidence” here.

Choice of an argument.
In this tentative illustration, we stick to three fictitious arguments:

- The functional deduction in Figure 2;
- The relational deduction in Figure 3;
- The probability deduction in Figure 4.

These three arguments are all valid, but they may not be universally sound. This 
tentative illustration only considers the inference precision of these three arguments at a
given sampling procedure and at a given operationalisation. The best inference precision 
obtained may therefore easily be overthrown by other unconsidered arguments,
sampling procedures and operationalisations.

P1 =
;Let maintenance policy compliance be “l”

M1 ( = ) ( 1 + 1)
;If maintenance policy compliance is “l”, then functionality is in “[k-1,k+1]”.

C1 ( 1 + 1)
;This conclusion follows from P1,M1. 

In this fictitious illustration, the evidence is a time series (l,k)[1,t]={{l,k},…} that only comprises two 
information sets: (l,k)[1,2]={{1,1},{1,2}}. Below, we comment on inference precision with respect to 
this specific spatiotemporally constrained evidence:

Valid argument: Yes, because C1 is a necessary consequence of P1,M1
Functional relation: No, because M1 is not a functional relationship.
Common sense evidence: In this fictitious example, we presume common sense about the 

interpretation of l as “maintenance policy compliance” and of k as 
“functionality”.

Universal argument: Yes, but the sample (l,k)[1,2]={{1,1},{1,2}} only existentially confirms 
the argument.

Decidable argument: Yes, only the presumed model M1 is controversial.

Figure 3 Example of a deductive argument with a relational model

The relational deduction (Figure 3) resembles the functional deduction (Figure 2); it just 
allows functionality K to be within some upper and lower limit. If the arguments from 
Figure 2 and Figure 3 were both sound, the functional deduction (Figure 2) would have 
been preferred because it is more restrictive. If the model M1 was just presumed, the
functional deduction (Figure 2) would be easier to falsify than the relational deduction
(Figure 3). The spatiotemporally constrained sample of evidence (l,k)[1,2]={{1,1},{1,2}}
for example, universally falsifies the functional deduction (Figure 2) because for l=1, 
two different values of k (1 and 2) are observed. But the same evidence existentially
confirms the relational deduction (Figure 3), as the values of K are still within the upper 
and lower limit of its model M1.

The probability deduction (Figure 4) represents a conventional alternative for a falsified
functional deduction (Figure 2). The probability deduction (Figure 4) decomposes 
functionality K into a deterministic model M1:f(l) and an independent error P4:
k=f(l)+ Both the model M1 and the error P4 do not follow from the evidence or from 



15

some common sense definition which makes M1 and P4 controversial. Due to this 
controversy, the probability deduction (Figure 4) becomes undecidable.

P1 =
;Let maintenance policy compliance be “l”

M1 ( = ) =
;Presume that if maintenance policy compliance is “l”, then functionality is estimated as 
“k”.

C1 =
;This conclusion follows from P1,M1. An estimator however is not in the evidence

P2 =
;Let functionality be “k”

P4 = ( = )
K. This means that model M1 captures all information from L about K in its parameters. 
The evidence P1,P2 does not suffice for P4.

M2 ( 1, 1, 4) ( 2)
;M2 is a common sense definition of a probability that expresses the probability of P2 
given P1,M1,P4. 

C2 ( 2)
;Follows from M2 and its antecedents.

In this fictitious illustration, the evidence is a time series (l,k)[1,t]={{l,k},…} that only comprises two 
information sets: (l,k)[1,2]={{1,1},{1,2}}. Below, we comment on inference precision with respect to 
this specific spatiotemporally constrained evidence:

Valid argument: Yes, but C1,C2,P4 are not immediately observable
Functional relation: Yes, but C1,C2,P4 are not immediately observable
Common sense evidence: In this fictitious example, we presume common sense about the 

interpretation of l as “maintenance policy compliance” and of k as 
“functionality”. Moreover we presume common sense about the 
definition of a conditional probability.

Universal argument: No, C2 only expresses a likelihood that is susceptible to extensions of 
the sample (l,k)[1,2]={{1,1},{1,2}}.

Decidable argument: No, both the model M1 and the presumption P4 are controversial. We 
deem that the model M2 is a common sense definition of a probability 
that follows from P1,M1,P4.

Figure 4 Example of an argument that deduces a probability

By random assignment of P1 treatments, the sampled evidence (l,k)[1,t] would become
compelling for the probability deduction (Figure 4) because P1 is known to be the only 
variable that could eventually associate with P2 then. Any association between P1 and 
the errors P4 would then become attributable to an incorrect mapping k=f(l), i.e. an 
incorrect model M1. So, the probability deduction (Figure 4) may then become
existentially decidable in terms of the likelihood of some presumed model M1 and some 
presumed error distribution P4. Existentially because this likelihood assessment only 
holds with respect to a specific sample. Particularly at large sample sizes, random 
assignment of treatments might have been compelling for the probability deduction 
(Figure 4). However, a sample of two observations (l,k)[1,2] collected by observational 
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research is insufficient to decide about the likelihood of a presumed model M1 and a 
presumed error distribution P4.

Table 3 surveys the inference precision of the functional deduction (Figure 2), the
relational deduction (Figure 3) and the probability deduction (Figure 4). The most 
precise assessments are in bold.

The soundness of the functional deduction (Figure 2) appears to be very precisely 
refuted. This refutation is universal; i.e. we will not change our position upon extension 
of the evidence to (l,k)[1,t]={{1,1},{1,2},…}. However, the functional deduction (Figure 
2) only presumes a very specific functional relation. Its refutation allows many 
alternative (causal) relations to be true. 

The soundness of the relational deduction (Figure 3) appears to be existentially
confirmed; i.e. it holds for the sample of evidence (l,k)[1,2]={{1,1},{1,2}} but a single 
counterexample beyond this sample may overthrow this existential confirmation by a 
universal refutation. Moreover, the model M1 is not a functional relation that compels 
the conclusion C1 to a unique value. Rather, the relational deduction (Figure 3) allows 
the conclusion C1 to be in the range “K=k±1”.

Functional 
deduction 
(Figure 2)

Relational 
deduction 
(Figure 3)

Probability 
deduction 
(Figure 4)

Valid argument Yes Yes Yes

Functional relation Yes No Yes

Common sense evidence - - -

Universal argument Yes: Refuted Yes: but existentially
confirmed

No

Decidable argument Yes Yes No

Table 3 Inference precision of three tentative arguments

The soundness of the probability deduction (Figure 4) appears to be undecidable
because it comprises two controversial presumptions. This indeterminacy is universal; 
we will not change our position upon the extension of the evidence to 
(l,k)[1,t]={{1,1},{1,2},…}. Random assignment of treatments would have attributed to 
the likelihood of the probability deduction (Figure 4) for some presumed model M1 and 
some presumed error distribution P4. However, a small sample of evidence collected by 
observational research was insufficient for a compelling likelihood assessment.
Therefore, the probability deduction (Figure 4) remained undecidable under this 
sampling procedure.

To conclude, Table 3 illustrated that validations could be imprecise in different ways. 
Possibly, we should not be indifferent about where to allocate inference imprecision. 
This assessment of inference precision has been simplified by just considering a single 
option for the operationalisation and the sampling procedure. Resembling a typical 
model selection process, the choice of the argument, the operationalisation and the 
sampling procedure simultaneously influence the inference precision. Therefore, this 
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problem of which choice to make does not allow for a decomposition. Moreover, we 
lack in-depth knowledge about some model that maps these choices to inference 
precision. As a result, we resort to an iterative quest for the most adequate option among 
an arbitrary set of candidates, as we will show in Section 5.3.

In Table 3, we deferred the operationalisation of causality to Section 2.3. However, the 
three arguments did not assert the same about the proposition:

Maintenance policy compliance causes functionality (L K)

which is at stake in this work. Although the functional deduction (Figure 2) has, most 
precisely, been refuted, it still allows for many alternative models M1 that also imply 
L K. In other words, the functional deduction (Figure 2) is more restrictive than 
strictly needed for the causality L K. The less precise alternative arguments may in the 
end assert more about the causality L K. In Chapter 4, we will also compare the 
candidate arguments on their claim about a more modest notion of prima facie causality 
L K (Table 5). In Table 21, we will survey the inference precision of the candidate
arguments together with their claim about the prima facie causality L K.

2.3 Introduction to causal inference

In general, variables could be related by:
- Definition like “1 inch=2,54 centimetres”;
- Association like “Pr(prospective weather| mercury column)”;
- Causality like “disease symptom”.

A definition is just a claim that only needs common sense to be accepted. A validation 
of some presumed association, generally expressed as a conditional probability, is well-
explored in statistics but it allows for many explanations. And finally a causality
provides the explanation for an association that is needed to predict the effect of a 
specific decision. In this work, we try to explain the evolution of functionality K by
maintenance policy compliance L. The challenge here is to assign a causal explanation 
to an eventual association between maintenance policy compliance L and functionality 
K.

2.3.1 From association to causality

A statistical association can be represented by the inequality:

| ( | ) | ( | ) 1

This means that the probability to obtain a value k, given some value l rather than l’, is 
not equal. So, the variables K and L are somehow associated. However, this association 
is explainable by various causal relations like L K (i.e. L causes K), K L or 
B (L,K). In the latter case, a confounding background variable B is the cause of both L 
and K. Therefore, Equation 1 is not conclusive about causality. Possibly, L and K are 
only related by some mediating or confounding variable B as shown in Figure 5. Then, 
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L and K are independent but they may still appear to be associated with respect to an
information set V={l,k}.

To reveal a causality L K, we should marginalise the effect of all background 
variables B 2 shows this marginalisation that 
would have identified the causality L K.

| , ( | , ) × ( ) | , ( | , ) × ( ) ( ) 2

The marginalisation over all B is intractable since we typically cannot observe all 
candidate causes of K. Still, we could eventually extend the information set V with 
some background variables B to eliminate their confounding or mediating effects by 
marginalisation. A statistical association between L and K may then appear to be a
spurious cause as illustrated in Figure 5.

SPURIOUS CAUSE:
Maintenance policy compliance

L

EFFECT:
Functionality

K

Confounder
(B)

Information set V={l,k}

Mediator
(B)

Figure 5 Inference of a spurious causality

For risk assessments and fault detection systems, statistical associations seem to be
appropriate since many applications of prognostics and diagnostics effectively use non-
causal symptoms. Vibrations, for example, are often not the cause of an impending 
bearing failure, but they may still effectively detect or predict it. A statistical association 
between maintenance policy compliance L and functionality K may similarly appear to 
be a warning signal but this statistical association does not imply that we can steer 
functionality K by control over maintenance policy compliance L. The identification of
the causes of failures in prognostics and diagnostics usually does not follow directly 
from their arguments. For risk assessment that is not a problem, but it is for decision 
making. A decision maker would like to know the prospective effect of his specific
choice of an action. We pursue to attribute an observed effect to the maintenance policy 
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in retrospect. A statistical association that holds across choices does not provide this 
essential explanation.

Thoughts about causal formalisms date back to structural equations modelling (Wright, 
1921), the potential outcomes framework (Neyman, 1923), (Rubin, 1974) and the
probability raising approach (Suppes, 1970). An in-depth discussion of these 
formalisms is beyond our scope. We depart from structural causal modelling (Pearl, 
2000) that unifies previously mentioned formalisms. Pearl (2010) defined a causality by 
augmenting a conditional probability function with a do(.) operator that refers to an 
action.

| | ( ) | | ( ) ( ) 3

Equation 3 for example asserts that an action do(l) determines the probability of K. Note 
that equation 1 only claims functionality K and maintenance policy compliance L to be
associated across decisions to carry out maintenance, whereas Equation 3 imposes a
response to a specific decision to carry out maintenance which is needed for causality 
(Greenland, 2011). When choosing an action do(l), we cannot observe the 
counterfactual effect of do(l’) which do(l) was supposed to prevent. So, we can only 
observe either of the two terms in Equation 3.

We may alleviate this generic concern by distinguishing “choosing” from “doing” in the 
process of maintenance decision making. Actions may violate or comply with the 
chosen maintenance policy from which they originate. So, the chosen maintenance 
policy do(l) may materialise in some alternative do(l’). Eventually, we then reveal the 
counterfactual effect of do(l’) to be avoided by the chosen maintenance policy do(l). In 
this work, we aim for a maintenance policy validation along this line. 

A random assignment of L treatments would have strengthened a belief that L rather 
than some confounder B (L,K) explains the statistical association in Equation 1
because random assignment of treatments weakens the assumption of equally
distributed confounders in the treatment and the control group. However, random 
assignment of treatments is not decisive about mediators L B K that could 
alternatively explain the statistical association in Equation 1. Therefore, random 
assignment of treatments alone does not resolve all controversy about causality 
assessments. Still, Greenland (2011), Pearl (2000) and Spirtes (2000) favoured
experimental research to at least alleviate concerns about confounders. 

For various reasons, we cannot randomly assign maintenance policies in the same way 
as in a controlled experiment. This is mainly due to the fact that we cannot easily 
intervene in the course of an organisation’s operation. We therefore just attempt to use
recording routines. Recordings from a so-called observational research are less coercive 
for causality than similar recordings from a well-designed experimental research. 
Causal claims based on observational research are therefore less precise. So, our attitude 
towards these recordings will depend on the sampling procedure. In the next sections,
we will adopt some more recent ideas about causal inference in observational research, 
but we will not entirely resolve the generic troubles with causality assessments.
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2.3.2 Non-causality assumptions

Pearl (2010) recommended to explicitly state the non-causality assumptions that allow 
us to claim a causality from a statistical association within an information set V by a 
path graph. 

CAUSE:
Maintenance policy compliance

LT

EFFECT
Functionality

KT+1

B

Information set V={lt,kt+1}

Figure 6 Path graph of non-causality assumptions

Figure 6 depicts the path graph that states the non-causality assumptions required to 
interpret Equation 1 as causal. The non-causality assumptions in Figure 6 may appear to 
be highly problematic, but at least we are explicit about them. The arrows are candidate 
causes. The omitted arrows are non-causality assumptions:

; KT+1 does not cause LT; this non-causality assumption seems innocuous 
from a viewpoint that an effect cannot precede its cause in time.
; B represents all non-redundant variables that could possibly affect KT+1
when LT is held constant; this non-causality assumption prohibits 
confounders B (LT,KT+1) and mediating causes LT B KT+1. This non-
causality assumption implies that LT comprises unique information about 
KT+1 that is not available otherwise. Since B could be any variable in the 
universe, this non-causality assumption is not efficiently assessable.

2.3.3 Prima facie causality

We confine the sampling procedure to an observational research that is spatiotemporally 
constrained. A uniform enforcement of actions do(lt) over the population is therefore 
unattainable, so we resort to a modest notion of prima facie (~at first sight) causality 
(Granger, 1980). A prima facie causality suits our sampling procedure but it still
attributes to causality by knowledge about time. For example, prima facie causality 
weakens the non-causality assumption KT+1 LT in Figure 6.
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Granger (1980) operationalised causality with constraint on an observational research. 
This notion of causality relies on the following principles:

1. The past and present may cause the future, but the future cannot cause the past;
2. All causal relationships remain constant in direction throughout time;
3. A cause comprises unique information about the effect that is not available 

otherwise. 
The following definition of a cause complies with these causality principles.

| ( | ) | ( | )      ; ( );   4

T+1 represents all non-redundant information in the universe up to a time T+1, LT
represents a candidate cause, KT+1 ,t refer to the respective 
values of these variables. Equation 4 addresses the three causality principles as follows:

- The first causality principle imposes that a statistical association between KT+1
and LT is not explainable by KT+1 LT by common sense.

- The second causality principle imposes that LT KT+1 implies LT+A KT+1+A but 
the positive strength of this causal relationship may change. Therefore, Equation 
4 holds at all times t.

- The third causality principle imposes that LT comprises unique information 
about KT+1 that is not available otherwise. Therefore, Equation 4 holds
irrespective of the universe T+1; i.e. at all .

The second and the third causality principle cannot be operationalised since we cannot 
access all possible values of time T and the universe 
claim of prima facie causality that only holds with respect to some limited information 
set V. Prima facie causality finds many applications in econometrics, ecology or climate 
studies which are often observational studies. In this work, we implement prima facie
causality in a maintenance decision making context.

Equation 5 defines LT as a prima facie cause of KT+1 with respect to the information set 
V={U,kt+1}.

| ( | ) | ( | )      ;  ( ) ( )    ;       5

This definition of a prima facie cause in Equation 5 resembles the definition of a cause
in Equation 4, but a prima facie cause only takes the subset U from T+1 as a given 
condition. Therefore, Equation 5 cannot claim that LT comprises unique information 
about KT+1. The inequality between the probabilities in Equation 5 and Equation 1 are 
exchangeable as U={lt}. We provide proof that also holds for an extended body of 
knowledge U={lt,b}.

Proof
Let U={lt,b} ; The body of knowledge U in Equation 5 has been defined as {lt,b}
Let K={kt+1} ; K is the event {kt+1}
Let L={lt} ; L is a subset of U that comprises the value {lt}
Let B={b} ; B is a subset of U that comprises the value {b}
Let L’=L-{lt} ; L’ is the complementary set of L, i.e. all values that the variable LT can take 

except for lt.
Let {lt’} L’ ;lt’ is some element from L’
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Then, Equation 6 is an alternative representation of the association in Equation 5 that should hold for at 
least one element in L L’ at all times t and at all possible b to be considered as a prima facie causality:( | ) ( | ) 6

Equation 6 straightforwardly deduces to:( )( ) ( ) + ( )( ) + ( )( )( ) ( ) + ( ) ( ) + ( )
( )( ) ( ) ( )
( | , ) ( | , )

7

The last line of Equation 7 is equivalent to Equation 1. This inequality should hold for at least one 
element in L L’ at all times t and at all possible b to be considered as a prima facie causality.

In Equation 5, we added quantifiers to the original definition of Granger (1980) in order 
to be more specific about the assessment of a prima facie causality. These quantifiers 
specify at which values in the body of knowledge U, the statistical association in 
Equation 5 should hold to identify a prima facie causality. For the prima facie causality 
in Equation 8, this implies that the statistical association should hold for some l and all
t,k to identify LT as a prima facie cause of KT+1 with respect to the information set 
V={lt,kt,kt+1}: 

| , ( | , ) | ( | )     ; ( ) 8

Figure 7 illustrates the effect of the quantifiers in Equation 8 on a claim regarding prima 
facie causality that holds with respect to the information set V={lt,kt,kt+1}.

Let the branch H of the event tree in Figure 7 represent all possible values in this
information set V={lt,kt,kt+1} and their conditional probabilities. The branch H
conceives two possible values of the body of knowledge U={lt,kt} that are equally 
probable.

Then, LT prima facie causes KT+1 with respect to the information set V={lt,kt,kt+1} by 
the definition in Equation 8 because some value of LT associates with KT+1 at all values 
of KT that are possible in the branch H. This conclusion follows from Equation 9 that 
confirms the inequality in Equation 8 at LT=1 at the only possible value of KT=0.

| (0|0,0) = | (0|0) 12 = 12| (0|1,0) | (0|0) 0 12 9

However, if the event tree H’ in Figure 7 represents all possible values in the 
information set V={lt,kt,kt+1}, LT would not prima facie cause KT+1 with respect to the 
information set V={lt,kt,kt+1} by the definition in Equation 8 because not a single value 
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of LT associates with KT+1 at all values of KT, that are possible in the event tree H’. The 
event tree H’ conceives four possible values of the body of knowledge U={lt,kt} that are 
equally probable. Despite the dependence between LT and KT+1 at KT=0 (Equation 9), 
LT and KT+1 appear to be independent at KT=1:

| (0|0,1) = | (0|1) 12 = 12| (0|1,1) = | (0|1) 12 = 12 10

We therefore deem that LT does not comprise unique information about KT+1 which is 
troublesome with regard to the third causality principle. In the case of H’, knowledge 
about KT is also needed to decide about the existence of a dependence between LT and 
KT+1.

KT+1=0

KT+1=1

KT+1=1

KT+1=0

KT+1=1

KT+1=0

KT+1=1

KT=0;LT=0

KT=0;LT=1

KT=1;LT=0

KT=1;LT=1

H

H’

1/2

1/2

1/2

1/2

1/2

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 7 Event tree of all possible values in an information set V={lt,kt,kt+1}

This example in Figure 7 showed that the possible values of the body of knowledge 
U={lt,kt} are decisive for the existence of a prima facie causality. An individual who 
knows that KT=0 in a specific case, i.e. who knows that KT=1 is impossible, concludes 
that LT prima facie causes KT+1 now. This same individual may also deem that both 
KT=0 and KT=1 are possible in principle and that LT does not prima facie cause KT+1
generally. 

In this work, we will implement the definition of the prima facie causality in Equation 5
and we will show the importance of knowledge about the possible values of the body of 
knowledge U in a maintenance case.
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2.3.4 Controversy about causality

A prima facie causality raises credence in causality by knowledge about time. This 
belief may appear to be false as shown in the following example. Let LT and KT+1 be 
truly independent as shown in Figure 8.

SPURIOUS CAUSE

(LT)

EFFECT

(KT+1)
B

Information set V’={ct-1,lt,kt+1}

CONFOUNDER

(CT-1)

Information set V={lt,kt+1}

Figure 8 Path graph of non-causality assumptions in an extended information set

Still, if the information set confines to V={lt,kt+1}, we may well confirm the prima facie 
causality:

| ( | ) ( )   ( ) 11

However, Figure 8 shows that LT and KT+1 are in fact only associated by the confounder 
CT-1. Figure 8 shows that if we had known the superset V’={ct-1,lt,kt+1}, we might well 
have refuted the prima facie causality:

| , ( | , ) | ( | )    ( ) 12

The specification of the time in Equation 11 and Equation 12 is essential to identify the
confounder CT-1 (LT,KT+1). Otherwise, a refutation of Equation 11 and a confirmation 
of Equation 12 would have been explainable by several causal structures like C (L,K),
L C K or K C L. The first causality principle in Section 2.3.3 asserting that the 
future cannot cause the past, excludes the causal structures
LT CT-1 KT+1 and KT+1 CT-1 LT. The confounder CT-1 in its turn, may a appear to 
be spurious cause upon further extensions of the information set. Any prima facie cause 
is only an existential claim that holds with respect to an information set V that is just a 
subset of the universe .
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The path graph specifies under what conditions a prima facie causality would still 
satisfy the “universal argument” inference objective in Section 1.4.1 that we need for a 
cause. The path graph in Figure 8 for example requires independence (=bidirectional 
non-causality assumption here) between B, CT-1 and B, LT to interpret the prima facie 
cause between CT-1 and KT+1 as a cause. Since we typically cannot enumerate let alone 
observe B exhaustively, satisfaction of the “universal argument” inference objective is 
unattainable. Claiming causality from an inferred prima facie causality remains
therefore controversial, which affects the inference precision.

The maintenance policy validation demonstrated in this work only relies on an inferred 
prima facie causality between future maintenance performance and current maintenance 
policy compliance. Knowledge about the causal structure is important for decision 
making. In the case of Figure 8, a decision maker better steers KT+1 by control over CT-1
than by control over LT because control over LT does not affect KT+1. A decision maker
could eventually only control the yet to be observed future. Then, knowledge about the 
prima facie causality between CT-1 and KT+1 and about the non prima facie causality 
between LT and KT+1 could already be appreciable. This, in spite of the fact that the 
decision maker ultimately needs to know the cause of KT+1.

Aven (2011), Parry (1996) and Zio (2009) confirmed that uncertainty about the future
may be irreducible (aleatory) or reducible (epistemic) by additional knowledge. The 
definition of a causality in Equation 4 could be seen as a case of epistemic uncertainty. 
Although Aven (2011), Parry (1996) and Zio (2009) did not present their case as a 
causal inference problem, they similarly confirmed that known and unknown mediating 
and confounding background variables hamper the assessment of eventual uncertainty 
reductions under an observational research construct. In this work, we will not entirely 
resolve the imprecision of causal claims from recording routines.
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3 Literature review

This chapter will position the maintenance policy validation to five different related 
areas of research. 

In Section 3.1, we will depart from the idea that the maintenance policy validation may 
be seen as a special case of a normative decision theory validation. Normative decision 
theory has many ramifications which differ in their representation of preference. We 
will therefore survey some representations of preference that drive or at least explain 
decisions. We will conclude that the assessment of an individual’s preference appears to 
be problematic. However, we will posit that policy assessments made by a group require
common sense about the group’s preference. Moreover, we may extend to conventional 
policy validations by using evidence about violations which can be efficiently obtained 
from maintenance cases.

In Section 3.2, we will deepen the common sense about preference mentioned in 
Section 3.1 by analysing maintenance scorecards that quantify a group’s preference by 
performance indicators. A conventional maintenance scorecard quantifies both 
maintenance policy compliance (leading indicator) and functionality (lagging indicator). 
A maintenance scorecard could therefore potentially provide the common sense 
evidence for the maintenance policy validation. However, maintenance scorecards seem
to be designed to show posterior compliance rather than to accommodate causal 
inferences. We will put forward three construction rules for maintenance performance 
indicators to enable a maintenance policy validation. This work will reveal the 
feasibility of these construction rules.

In Section 3.3, we will review some approaches to maintenance policy assessments that 
typically reason about a yet to be observed future. We will argue that maintenance 
policy assessments follow a process of satisficing rather than optimising. Satisficing 
makes fewer demands on a decision maker’s psychological and physiological abilities
but it is more modest in its claim. We will explain that an argument for the maintenance 
policy validation, which relies on a presumed independence, may still be informative 
for both satisficers and optimisers. We will also acknowledge that the maintenance 
policy validation potentially provides the essential empiricism to maintenance policy 
assessments, like the reliability centred maintenance process, that predominantly rely on 
expert judgement.

In Section 3.4 and Section 3.5, we will survey some diagnostic and prognostic 
arguments that we will also cover in Chapter 4. In diagnostics and prognostics, a single 
inference that universally outperforms all others seems non-existent. Similarly, our 
approach to the maintenance policy validation resorts to a case dependent iterative 
journey along optional inferences. We will acknowledge that maintenance and 
reliability applications of prognostics and diagnostics conventionally infer functionality 
from physical variables. For risk assessment, an association or symptom may be as 
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effective as a cause. However, a maintenance policy validation requires a causal 
explanation.

Finally in Section 3.6, we will summarise the lessons learned from this literature 
review.

3.1 Review of normative decision theory

Maintenance is not a natural phenomenon that just befalls us. Rather, maintenance 
originates from conscious decisions. Figure 1 represented a decision to maintain or not 
to maintain as a discrete choice problem that provides access to a future with or without 
maintenance. We are typically not indifferent regarding these futures; i.e. we usually 
have some preference. The following definition of preference (Savage, 1954), (Broome, 
2004) may suffice for this exposition:

A decision maker prefers xi to xj means that this decision maker would choose xi
rather than xj if he were to have a choice between xi and xj.

So, any decision to carry out maintenance is somehow preferred over the decision to do 
nothing. Normative decision theory describes or prescribes that decision makers should 
decide by their preference. The challenge here is to make preference observable. This 
section will therefore survey representations of preference; i.e. utilities.

The idea that preferences are subjective is far from new. Bernoulli (transl. 1954) for 
example argued that preference does not follow from maximising the mathematical 
expected gain. Rather, the preference for some expected gain may differ for various 
decision makers. To illustrate the point, we rephrase one of  Bernoulli’s (transl. 1954)
examples:

Example
Consider a discrete choice problem that allows for two alternatives:

Action (a1) Participate in a lottery that increases a decision maker’s initial wealth x by 100 at 
a probability of 0,95 or by 0 at a probability of 0,05.

Action (a2) Pay for an insurance fee of 8 to be certain about a wealth increase of 100. So, the 
decision maker’s initial wealth will certainly increase by 92.

The mathematical expectation of wealth, given a choice of action a1 is:[ | ] = × ( ) = ( + 100) × 0,95 + ( + 0) × 0,05 = + 95 13

The mathematical expectation of wealth, given a choice of action a2 is:[ | ] = × ( ) = ( + 92) × 1 = + 92 14

Regardless of the initial wealth x, the difference in mathematical expectation is E[X|a1]-E[X|a2]=3. So,
any decision maker should always choose action a1 if preference is represented by mathematical 
expectations. However, Bernoulli (transl. 1954) acknowledged that the initial wealth matters for decision 
makers. He therefore proposed to measure preference by an expected utility. The utility function is in this 
case assumed to be the logarithm of wealth, expressing a decreased additional utility of every amount of 
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additional wealth. This means that the expected utility of action a1 is:

[ | ] = ×
[ | ] = × = ( + 100) , + ( ) , 15

while the expected utility when choosing for action a2 is:

[ | ] = × = ( + 92) 16

For a poor decision maker (x=1), the expected utilities equal:[ | ] = (1 + 100) , + (1) , = 1,904[ | ] = (1 + 92) = 1,968 17

Therefore, the poor decision maker should be risk averse (choose action a2). A wealthy decision maker
however (x=10.000) should be risk seeking (choose action a1) since:[ | ] = (10.000 + 100) , + (10.000) , = 4,0041[ | ] = (10.000 + 92) = 4,0040 18

A decision maker’s preference is now not just represented by a difference in mathematical expectations
E[X|a1]-E[X|a2], but by a difference in expected utility E[U|a1]-E[U|a2] that considers the decision 
maker’s initial wealth. In this way, Bernoulli (transl. 1954) conceived subjective preferences.

Bernoulli (transl. 1954) generalised this example to a hypothesis that any increase in 
wealth, no matter how insignificant, will always result in a utility increase, whereas the 
magnitude of this utility increase is inversely proportional to the quantity of goods 
already possessed. Bernoulli (transl. 1954) only claimed this hypothesis of decreasing 
marginal utility as highly probable by providing a counterexample of two tentative 
prisoners who could repurchase their freedom for 4000 ducats. A rich prisoner who 
already owns 2000 ducats may better appreciate a lottery with an eventual gain of 2000 
ducats than his poorer fellow. This counterexample of increasing marginal utility
requires a definition of a utility function u(.) on various eventual nonmonetary attributes 
(e.g. freedom). However, it seems plausible that decision makers cannot define their 
utility function through introspection. This causes an assessment problem for 
preferences.

The theory of revealed preference (Samuelson, 1938) presumed that preferences 
straightforwardly follow from choice behaviour provided that a decision maker’s choice 
behaviour is consistent. So, a decision maker should every time choose for xi from xi,xj
available to reveal his preference. The theory of revealed preference attracted attention 
because of its potential to observe preference through choice behaviour whilst excluding
an assessment of the decision maker’s state of mind (Little I. , 1949). Although the 
surmise that preferences are revealed by choice behaviour seems innocuous, its
validation is highly problematic (Sen, 1973), (Beshears, Choi, Laibson, & Madrian, 
2008), (Gruene, 2006). To illustrate the point, decision makers frequently choose xi
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from xi,xj available and consecutively choose xj from xi,xj available. Still, it remains 
undecidable whether this observation falsifies the theory of revealed preference or 
whether this observation is just an inadmissible case of inconsistent choice behaviour.
Sen (1973) therefore argued that the theory of revealed preference requires an 
assessment of consistency that is founded on a decision maker’s state of mind. Little’s 
(1949) idea that choice behaviour alone could reveal preferences is therefore disputable.

Neumann and Morgenstern (1944) alternatively proposed to deduce preference from 
probabilities rather than from choice behaviour. We revisit Bernoulli’s (transl. 1954)
example to illustrate this proposal.

Example
Let both the rich and the poor decision maker rank their preference for some optional wealth increase as 
follows:(100) > (92) > (0) (0) < (92) < (100) 19

Then, the continuity axiom (Neumann & Morgenstern, 1944) implies:(100) > (92) > (0) × (100) + (1 ) × (0) > (92)  : 0 < < 1(0) < (92) < (100) × (100) + (1 ) × (0) < (92)  : 0 < < 1 20

which means that there must be some tentative probability where a decision maker is indifferent 
towards a choice of action a1 to participate in a lottery that yields a wealth increase of either 100 or 0 and 
a choice of action a2 that yields a certain wealth increase of 92. In Bernoulli’s (transl. 1954) example, the 
decision maker’s current wealth determines the strength of a preference for the outcomes {0,92,100} in 
Equation 20. This special case of known utilities allows us to calculate :(100) > (92) > (0) ( + 100) + (1 ) ( + 0) > ( + 92)  (0) < (92) < (100) ( + 100) + (1 ) ( + 0) < ( + 92) 21

The poor decision maker then becomes a risk seeker at >0,98 and a risk avoider at <0,98. The rich 
decision maker then becomes a risk seeker at >0,92 and a risk avoider at <0,92. Since the true 
probability to win the lottery is 0,95 in Bernoulli’s (transl. 1954) example, it is evident that the poor 
decision maker is risk averse and that the rich decision maker is risk seeking. In Bernoulli’s (transl. 1954)
special case, the utility that a decision maker assigns to an outcome {0,92,100} is known to be the 
logarithm of wealth. Neumann and Morgenstern (1944) conversely proposed to calculate the unknown 
utility from some assessment of . As opposed to Bernoulli’s (transl. 1954) representation of preference
by the logarithm of wealth, Neumann and Morgenstern’s (1944) representation of preference (by )
confines to the three outcomes {0,92,100} available and it cannot be infinite since is in <0,1>.

Neumann and Morgenstern (1944) acknowledged that the tentative probability should 
be somehow assessable to operationalise the strength of a preference. De Finetti (2008)
alleged that it is rational to let the “true” probability then determine choice behaviour as 
shown in the example above. This “true” probability may follow from observed 
frequencies. In practice, decisions are often made in ignorance of probabilities and 
observed frequencies are unattainable for decisions that are deemed as unique. 

Savage (1954) extended on Neumann and Morgenstern (1944) by allowing a decision 
maker to be ignorant about the probability of the effect X. Savage (1954) posed an 
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action A to be a function that attaches an effect X to some state of the universe S as 
shown in:( ) 22

Savage’s (1954) omelette example illustrates the meaning of Equation 22.

Example
A decision maker chooses between action a1 and action a2.

Action (a1) Add a sixth egg that is either good (S=s1) or bad (S=s1’) that results in a six egg 
omelette (X=x1) or a wasted omelette (X=x1’).

Action (a2) Do not add a sixth egg which results in a five egg omelette and one wasted egg 
(X=x2).

The preference ordering of X has been given by:( ) > ( ) > ( ) ( ) < ( ) < ( ) 23

If the “true” probability and the subjective of X=x1 were known, the solution to this decision problem 
would have followed from Equation 20 in line with Neumann and Morgenstern (1944). Knowing the 
causal mapping from Equation 22, this decision problem may alternatively be solved by knowledge about 
the current state of the universe S.

[ | ] = ×
24[ | ] = ( ) × ( ) + ( ) × ( )[ | ] = ( )

The probability in Equation 24 (Savage, 1954) has been built on the current state of the universe S 
whereas the probability in Equation 15 (Bernoulli, transl. 1954) and the tentative probability have been 
built on a prospective effect X. In principle, uncertainty about the current state of the universe S is 
eliminable by observing at the moment of deciding whereas prospective effects X remain a matter of 
belief at that time. However, this potential advantage of Savage (1954) over Bernoulli (transl. 1954) and 
over Neumann and Morgenstern (1944) comes at the expense of problems to assess the causality in 
Equation 22.

Jeffrey (1974) opposed Savage’s (1954) idea that actions are mappings from states to 
effects as shown in Equation 22. In his view, Equation 22 is a function that maps an 
infinite amount of possible states of the universe to definite effects. A decision maker
may eventually learn in retrospect how his action associates to the current state of the 
universe, but he cannot be expected to know the effects of his action on every possible 
state of the universe. Jeffrey (1974) asserted that Savage’s (1954) omelette example is 
delimited by a finite number of states, by a finite number of effects and by some in-
depth knowledge about their mapping.

Jeffrey (1974) alternatively posed that decision makers and their actions are an 
integrated part of the universe that may be represented by some set of propositions. So, 
an action (A=ai) and an effect (X=xj) are merely labels on propositions whose 
association does not require an explanation like A X.
Jeffrey (1974) commented that most of the propositions about the state of the universe 
are beyond a decision maker’s span of control. For example, a decision maker cannot 
influence the probability of rain. Still, he may or may not take an umbrella. Both the 
weather X and his action A are ingredients of the state of the universe to be evaluated 
by Equation 25.
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[ | ] = | | × , 25

Jeffrey’s (1974) evidential decision theory and its ramifications omit a notion of 
causality. Equation 25’s conditional probability merely expresses to what extent the 
values of an effect X and an action A coincide. So, evidential decision theories omit 
knowledge about causalities. Newcomb’s problem (Nozick, 1969) illustrates the 
difference between causal and evidential decision theories.

Example
A decision maker chooses for either action a1 or action a2.

Action (a1) Take box 1 that either contains $0 or $100.
Action (a2) Take both box 1 that either contains $0 or $100 and box 2 that certainly contains $1

An oracle that appeared to be correct in predicting effects from choices of many decision makers in many 
cases, alleges that the content of box 1 depends on the decision maker’s choice. It will contain $100 upon 
action a1 and $0 upon action a2. Evidential decision theory takes the oracle’s past predictions into account 
since there appears to be some unexplained association between the oracle’s prediction and reality. Then,
expected utilities follow from:[ | ] = (100| ) × (100) + (0| ) × (0) (100)[ | ] = (101| ) × (101) + (1| ) × (1) (1) 26

Causal decision theory additionally involves an explanation for the association between the oracle’s 
prediction and the decision maker’s choice. Eventually, the decision maker still believes that his choice 
can never cause the content of box 1, despite the observed frequency of correct oracle predictions in the 
past. Then, the content of box 1 is predetermined regardless of the oracle’s prediction and expected 
utilities follow from Equation 27.[ | ] = (100) × (100) + (0) × (0) = × (100)[ | ] = (101) × (101) + (1) × (1) = × (101) + (1 ) × (1) 27

The action a1 yields a lower expected utility in Equation 27 (E[U|a1]<E[U|a2]) irrespective of the 
unknown probability whereas the action a1 yielded a higher expected utility in Equation 26
(E[U|a1]>E[U|a2]) due to the oracle’s claim regarding the probabilities. This means that a decision maker
aiming exclusively for wealth favours action a2 under causal decision theory and action a1 under 
evidential decision theory. Therefore, Newcomb’s problem evokes decision indeterminacy.

For prospective decision making, causal decision theories (Gibbard & Harper, 1981),
(Lewis, 1981) often have more intuitive appeal than evidential decision theories. 
Evidential decision theories only require a coinciding of an action ai and an effect xj
across cases while omitting an explanation. So, evidential decision theory just considers 
statistical associations irrespective of whether they are explained by oracles or any 
background variable. Causal decision theories are more compelling because they 
presume an effect that is uniquely attributable to a specific action. A maintenance policy 
validation that confirms the causality L K is more coercive, but the association 
Pr(K|L) Pr(K) would have sufficed already under evidential decision theory.

A cause could be sufficient or necessary to produce an effect. A sufficient cause 
satisfies: “If I had done a, then x would have occurred” whereas a necessary cause 
satisfies: “If I hadn’t done a, then x would not have occurred”. If an action is only a 
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sufficient cause for an effect, it may be vulnerable to pre-emption as shown in the 
following example (Lewis, 2000):

Example
Billy and Suzy throw rocks at a bottle. Suzy throws first, or maybe she throws harder. Her rock arrives 
first. The bottle shatters. When Billy's rock gets to where the bottle used to be, there is nothing there but 
flying shards of glass. Without Suzy's throw, the impact of Billy's rock on the intact bottle would have 
been one of the final steps in the causal chain from Billy's throw to the shattering of the bottle. But, 
thanks to Suzy's pre-empting throw, that impact never happens.

Hitchcock (2013) argues that this example may evoke problems to assess the cause of 
the shattering of the bottle in retrospect. In the case of pre-emption, the maintenance 
policy validation would similarly fail to identify an effect of maintenance policy 
compliance. However, causal decision theory advises Suzy correctly for her prospective
decision about whether to throw the rock or not. Equation 28 explains that Suzy should 
be indifferent towards throwing or not throwing if she fully trusts Billy’s destructive 

ver, if she does not entirely t

[ | ]  = ( + ) × ( ) + (1 ) × (1 ) × (~ )[ |~ ] = × ( ) + (1 ) × (~ ) 28

In conclusion, we introduced various representations of preference that could drive or at 
least explain a decision to carry out maintenance. Bernoulli (transl. 1954) still sought 
for some model that deduces preference from a prospective outcome but he already 
realised that these models are disputable. Revealing preference from choice behaviour 
(Samuelson, 1938) seemed intuitively appealing, but its validation suffered from 
difficulties to establish consistent choice behaviour. We reconcile with Sen (1973) that 
choice behaviour alone is insufficient to assess preference. Neumann and Morgenstern 
(1944) alternatively tried to deduce preferences from probabilities. Unfortunately, these 
probabilities of future effects often appear to be problematic as far as assessability is 
concerned. Savage (1954) tried to build preferences on the potentially more assessable 
current state of the universe, but he needed an equally problematic notion of causality to 
succeed. We also referred to evidential decision theory that may reduce the aim of this
work (Section 1.3) to an improved inference of:

Maintenance policy compliance and functionality are associated.

The operationalisation of a causality as introduced in Section 2.3 would then become 
superfluous. Still, causal decision theories are intuitively more appealing for a decision 
maker who typically wants to know the prospects of his specific choice. Moreover, 
Newcomb’s problem showed that a decision maker who believes in a non-causality, 
typically involves this belief in his preference assessment. Even if this belief has been 
troubled by the observed frequency of correct oracle predictions. We also presented a
case of pre-emption to illustrate that a causal decision theory may still advise a decision 
maker correctly about his prospects despite its validation issues in retrospect. So, 
decision makers do not exclusively rely on validatable knowledge to assess their
preference. On the other hand, the preferred effect of decisions to carry out maintenance
should be somehow observable for a meaningful justification of maintenance. We
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therefore believe that a maintenance policy validation can be appreciated by scientists as 
well as by maintenance decision makers.

Normative decision theory did not appear to be prescriptive about what to prefer. For 
example, a preference for the destruction of the whole world to the scratching of my 
finger (Hume, 1739) is permissible. However, concerns about the operationalisation of
preference are alleviated in the case of collaboration. Collaboration requires that 
decision makers align their individual preferences somehow with the group’s 
preference. Some common sense about this group’s preference must then exist. Since a 
maintenance policy is typically assessed by a collaborating group, scepticism about the 
operationalisation of preference may appear to be surmountable.

Normative decision theory typically presumes that “choosing” and “doing” coincide and 
correspond. However, in maintenance, neither is the case; i.e. the choice to admit an 
action to the maintenance workload (gatekeeping) may be far ahead of its execution and 
this execution in its turn may not correspond with the original choice. This lack of 
maintenance policy compliance may reveal a counterfactual effect that was intended to 
be avoided. Establishing this counterfactual effect may appear to be a suitable
maintenance policy validation that, to the best of our knowledge, has not yet been 
available in the existing literature on normative decision theory.

3.2 Review of maintenance performance measurement

Maintenance decision making typically involves groups of decision makers. If every 
group member could independently pursue his disputable preference, the group’s 
preference may not be obtained. The existence of any organisation stems from the
choice to collaborate. As illustrated by the prisoner’s dilemma, the group’s preference 
would have become easier to attain if the individuals had been able to align their goals. 
To enable this alignment, an organisation often clarifies its goals in terms of 
performance indicators (Kaplan & Norton, 1996), (Drucker, 1954). This section will 
therefore seek common sense about maintenance performance indicators from a review
of maintenance scorecards. Furthermore, we evaluate whether some maintenance 
performance measurement conventions would enable causal inferences.

The definition of maintenance in Section 1.4.3 is informative about the intention of a 
maintenance policy. This definition does not claim that a maintenance policy has an 
observable functionality effect by definition because:

- The intentions may not be revealed;
- A required function is merely a subjective aspiration level instead of a well-

defined measurable quantity. 
On the other hand, if functionality were truly independent of the applied maintenance 
policy, functionality would not be a concern in maintenance policy assessments and
maintenance would become indistinguishable from non-maintenance. In addition, if
functionality were merely some subjective construct that lacks any common sense, it 
would also lack any explanatory power about reality. In this work, we therefore argue 
for some common sense about an observable functionality effect of a maintenance 
policy. In this section, we will analyse whether conventional maintenance performance 
indicators could provide this observable evidence.
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Table 4 (Muchiri, Pintelon, Gelders, & Martin, 2011) depicts a typical maintenance 
scorecard (Haarman & Delahay, 2004), (Weber & Thomas, 2005), (CEN, 2007),
(EFNMS; SMRP, 2011), (Blanchard, 2004), (Jones, 2007). The maintenance scorecard 
in Table 4 reconciles with the simplified maintenance scorecard in Table 1 since it 
comprises leading indicators for maintenance policy compliance L and lagging 
indicators for functionality K and resource costs C. Only the univariate representation of 
L,K,C in Table 1 has become highly dimensional in Table 4. Leading indicators are 
generally seen as causal for lagging indicators (Kaplan & Norton, 1996). So, a
conventional maintenance scorecard potentially comprises the observable evidence for 
the maintenance policy validation.
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Equipment performance Number of failures
Failure/breakdown frequency
MTBF
Availability
Overall Equipment Effectiveness

Cost performance Direct maintenance cost
Breakdown severity
Maintenance intensity
Maintenance cost component over manufacturing cost
Equipment replacement value
Maintenance stock turnover
Cost of personnel
Cost of subcontractors
Cost of supplies
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Identification Proactive work
Reactive work
Improvement work
Work request response rate

Planning Planning intensity/rate
Quality of planning
Planning responsiveness

Scheduling Scheduling intensity
Quality of scheduling
Schedule realisation rate

Execution Schedule compliance
MTTR
Manpower utilisation rate
Manpower efficiency
Work order turnover
Backlog size
Quality of execution/rework

Table 4 Instance of a maintenance scorecard

We follow Simon’s (1997) observation that an organisation’s performance relies on 
“doing” as much as on “choosing”. So, it relies on directing as well as on executing. 
Section 3.1 already mentioned that normative decision theorists often pose “choosing”
and “doing” as indistinguishable. Then, the resource costs C of “doing” would just 
become a logical rather than a causal effect of a choice. We exclude a definitional 
debate about whether resource costs should be seen as the price of a choice or as the
causal effect of a choice. We confine this work to the validation of a causality between
maintenance policy compliance L and functionality K. Since maintenance scorecards 
typically comprise both a leading indicator L and a lagging indicator K, they may 
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provide the empirical evidence for a maintenance policy validation. We will proceed on 
this evidence.

The maintenance scorecards that we analysed are merely used to show posterior 
compliance to some requirement. However, decisions can only influence the future. So, 
predicting performance indicators, given a particular action, is what is really needed to 
accommodate data driven decision support. Of course, the current state of the universe 
could also support decisions as we illustrated by Savage’s (1954) omelette example, 
provided that we also somehow know the causal mapping to future effects (Equation 
22). The maintenance policy validation pursues observation of this causality in 
recording routines.

Possibly, maintenance scorecards could support decisions in a better way. Fluctuations 
rather than steadiness may reveal causalities that allow us to learn about the system 
behaviour. Many performance indicators on the typical maintenance scorecard in Table
4 are averages that irreversibly levelled out the informative fluctuations that we need. 
We therefore suspect that we could potentially learn much more from the underlying 
recording routines of Table 4.

We analysed Keeney and Raiffa’s (1976) desired properties for utility attributes that 
appear to be ignored in Table 4. In the remainder, we will put forward three
construction rules for performance indicators that serve the maintenance policy 
validation and that are compatible with these desired properties of utility attributes
(Keeney & Raiffa, 1976). These construction rules are therefore expected to serve 
prospective decision making as well as the posterior maintenance policy validation. 
These construction rules are: (i) avoid redundancy, (ii) sample at a sufficient rate and 
(iii) balance completeness with efficiency. We will assess whether these construction 
rules indeed contribute to inference precision in a typical realistic case study (Chapter
5).

3.2.1 Avoid redundancy in performance indicators

A redundant variable is a variable that logically depends on another variable. For 
example, let the availability, which is one of the indicators in Table 4, be defined as:

= + 29

Then, availability would reduce to a deductive consequence of MTBF and MTTR by 
definition, while the latter two quantities are also separate performance indicators in 
Table 4. This means that redundancy exists in this maintenance scorecard. That is 
undesirable, since redundant indicators both contribute to the overall utility function in a 
similar way. Moreover, a dependence between MTTR and availability should in this 
case not be interpreted as a causal relation between a leading and a lagging performance 
indicator. Rather, it is just a logical dependence following from the availability 
definition in Equation 29.
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Another form of redundancy is longitudinal redundancy, which occurs when 
performance indicators are deduced from an interval that exceeds the sampling interval.
For example, let the MTBF in Table 4 be calculated from failure data collected over the 
last year, whereas the sampling interval for the scorecard is just a month. Then, two 
consecutive year-to-date MTBF’s share 11 out of 12 months of evidence. Any 
autocorrelation in the MTBF signal, which normally might indicate a (causal) relation 
between the failures in the past and in the present, is probably entirely definitional. 
Moreover, this autocorrelation is still uninformative for decision making. Only next 
month’s (limited) contribution to this year-to-date MTBF can be controlled to some 
extent by a suitable maintenance policy, whereas the remaining contribution (of the 11 
preceding months) is a known accomplished fact that cannot be controlled anymore, and 
should thus be omitted from a utility function u(.). 

Longitudinal redundancy is often avoidable. Lead times and queues for example are 
related by Little’s (1961) law that asserts that a time T limiting average of a queue D 
follows from an arrival N limiting average of a lead time W under the condition that a 
time limiting average arrival rate exists (Stidham, 1974).

( = × ) lim 1 = lim × lim 1
30

A conversion from the instantaneously observed queues DT and arrivals NT to the 
averages in Equation 30 is irreversible. To avoid longitudinal redundancy, we favour an 
instantaneously observable queue DT over its corresponding lead time WN. Lead times 
rather than queues seem conventional in maintenance performance measurements, but 
the underlying recording routines may still enable a reconstruction of the queue that 
corresponds with that lead time. In conclusion, conventional maintenance scorecards 
could be improved by eliminating logical dependencies.

3.2.2 Sample at a rate that allows reconstruction of the original signal

We did not find any guidance in the existing literature on maintenance performance 
measurement about sampling rates. However, maintenance scorecards are being 
sampled at some rate in practice, typically weekly, monthly or quarterly. It seems that a 
sampling rate is merely opportunistically determined by a meeting frequency or by the 
effort required to assess a maintenance scorecard.

Adjacent observations often appear to be dependent if they are close enough in time. So, 
the dependence between adjacent observations follows from the sampling rate. This 
means that the sampling rate determines whether or not it is possible to reconstruct the 
original signal. Time series analysis uses this dependence to predict some steps ahead in 
time (Box, Jenkins, & Reinsel, 2008). In its most simple setup, time series analysis may 
predict functionality just from its past values. Possibly, this functionality prediction 
benefits from injecting maintenance policy compliance into the time series model. In 
that case, the time lags of this predictive model attribute to causality as we illustrated in 
Figure 8.
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We therefore suggest adopting the signal processing convention that prescribes to 
consciously choose a sampling rate that reconstructs the original signal. Fluctuations 
rather than averages allow us to learn about the system behaviour. So, it is the 
amplitudes in the candidate causes that eventually allow us to reveal a prima facie 
causality.

Instantaneously observable variables are, in principle, recordable at any rate without 
creating longitudinal redundancy. We therefore suggest substituting the rates (e.g. 
failure rate) and lead times (e.g. MTTR) in Table 4 by occurrences and queues
respectively. Occurrences are phenomena that happen at some instant of time (e.g. a 
failure) and queues are counts at some instant of time (e.g. the number of faults). Time 
series of occurrences or queues are convertible to rates or lead times, but that process is 
irreversible. These levelling out operations therefore yield a loss of information, and 
should therefore only follow from an analyst’s deliberations about an appropriate 
model. Even when a well-motivated data reduction is performed, still the original time 
series data should be stored, as that enables reanalysing the data with newly developed 
analysis methods. In conclusion, conventional maintenance scorecards could be 
improved by a consciously chosen sampling rate.

3.2.3 Balance completeness with efficiency

In an ideal operationalisation, functionality K and maintenance policy compliance L
have a comprehensive univariate representation. However, Keeney and Raiffa (1976)
confirmed a requirements engineering convention (Gilb, 2006), (Robertson & 
Robertson, 2006) that a decision maker’s objectives are typically poorly accessible and 
quantifiable. The trawling for maintenance performance indicators therefore typically 
leads to a highly dimensional but still incomplete maintenance scorecard.

Since decision makers can only process a limited amount of information, they should 
prioritise the concerns they want to trace when selecting recording routines. Recording 
routines therefore just comprise a limited amount of variables that have been traced
during a limited interval of time. Therefore, efficiency and completeness are far from 
trivial in this observational research.

Due to this efficiency constraint, we suspect the maintenance policy validation to be 
incomplete. We just resort to balancing completeness with efficiency. This balance may 
shift in time as maintenance scorecards are consistently and periodically recorded. 
Extended time series may then gradually allow for completer, higher dimensional
models. Still, we may fail to collect sufficient evidence to validate even the simplest 
model within an acceptable time. An acceptable time is typically much shorter than the 
life of the item, the life of the operating organisation or the life of the analyst. For 
example high-impact-low-probability effects of a maintenance policy will therefore 
remain unassessible by the proposed maintenance policy validation.

None of our sources on maintenance performance measurement appeared to use their 
maintenance scorecards for prospective inferences or for retrospective policy 
validations. We therefore do not expect that the dimensionality of these maintenance 
scorecards has been based on the completeness-efficiency balance that we seek. This 
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work therefore provides a first look at the dimensionality of a maintenance performance 
management model whose validation is tractable.

Keeney and Raiffa (1976) similarly inferred prospectively what decision makers 
(should) decide. So, Keeney and Raiffa (1976) must also balance completeness with 
efficiency. Completeness is in their case needed to capture all concerns of the decision 
maker, but a minimum number of non-redundant, decomposable utility attributes is 
needed for efficiency. However, the maintenance policy validation does not rely on 
expert judgement but on recording routines. Therefore, the balance of completeness and 
efficiency in the two inferences may well differ. 

Incompleteness just delimits the maintenance policy validation to some less 
comprehensive notions of functionality and maintenance policy compliance. We simply
accept that some components of functionality or maintenance policy compliance remain 
background variables. These background variables are just a subset of the information

T+1 that we need for causal claims (see Section 2.3). From this 
perspective, incompleteness is no more than a contributor to the burden of 
operationalising causality.

3.3 Review of maintenance policy assessments

A maintenance policy assessment precedes any maintenance policy validation. This 
section will therefore introduce maintenance policy assessments that pursue a preferred 
but yet to be observed future. So, maintenance policy assessments apply some modus 
ponens inference of prospects. A modus ponens inference requires a presumed model 
that infers the effects of a decision. It is possible that a maintenance policy validation 
can be reduced to a confirmation of this presumed model which maintenance decision 
makers were willing to accept. Moreover, the maintenance policy validation may appear 
to appreciably give support to maintenance policy assessments.

In Section 3.3.1, we will explain that decision makers poorly apply maintenance
optimisations. This is plausible, because decision makers are simply not able to find the
global optimal maintenance policy among all possible alternatives. Maintenance 
optimisations predominantly rely on expert judgement. We will explain that there is 
little reason to believe that maintenance policies are optimal in practice and, moreover,
that little effort has been spent on even observing the effect of a maintenance policy. 
The maintenance policy validation may potentially contribute to this essential 
empiricism.

In Section 3.3.2, we will introduce satisficing that reconciles far better with the actual 
decision making process while reducing the analysis burden. However, satisficing 
typically yields a suboptimal maintenance policy, which is problematic for the 
maintenance policy validation since policy violations do not necessarily deteriorate
functionality. We will argue that there is no reason to pursue a maintenance policy 
validation of a presumed (optimisation) model that a satisficing decision maker refused 
to construct in the first place.
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In Section 3.3.3, we will illustrate that a maintenance policy validation of a more 
modest independence presumption enables a simplified representation of the universe 
which is beneficial for both optimisers and satisficers. Moreover, a maintenance policy 
that merges satisfied and optimised decision rules may still be validated by an argument 
that is based on this independence presumption. This work will consider arguments that 
presume independence as well as arguments that presume dependence. The inference 
precision of the maintenance policy validation potentially benefits from the choice of
either of these arguments.

Finally, Section 3.3.4 will introduce the reliability centred maintenance process that is 
frequently applied to maintenance policy assessments. The reliability centred 
maintenance process resembles satisficing rather than optimising and it is 
predominantly expert driven. The maintenance policy validation may appear to be a
meaningful empirical extension to the reliability centred maintenance process.

3.3.1 Optimise maintenance

Maintenance optimisations presume that a maintenance policy causes effects. The most
rewarding effect then follows from adherence to the optimal maintenance policy. 
Therefore, a review of maintenance optimisations may appear to be informative for the
maintenance policy validation.

It does not seem very difficult to identify the objectives of a maintenance policy from 
the simplified maintenance scorecard in Table 1: continuous functionality at zero 
resource costs. In practice, a decision maker cannot find a maintenance policy that 
achieves these objectives. Then, a decision maker resorts to a policy that does not 
entirely fulfil his objectives. Optimisation is about balancing counteracting goals into an 
attainable compromise, rather than about fictitious objectives.

Optimisation presumes that decision makers are able and willing to collect and process 
all information needed to identify the attainable optimum. Decision makers often seem
incapable of collecting all tentative alternatives, of assigning probabilities and utilities 
to their effects and of calculating some global maximum (if existing) of their expected 
utility. In a delimited universe of a fixed number of lotteries with known probabilities 
and prices like in Bernoulli’s (transl. 1954) example in Section 3.1, optimisation may be 
adequate. In a realistic universe of an undetermined number of lotteries with unknown 
probabilities and prices, optimisation appears to be intractable (Simon, 1978).
Unsurprisingly, Dekker (1996), Horenbeek et al. (2011), Doyle (2002) and Scarf (1997)
acknowledged that maintenance optimisations are poorly used in practice. This may be
because in a realistic universe optimisation imposes too heavy demands on a decision 
maker.

Horenbeek et al. (2011) claimed that case studies often only demonstrate the 
applicability of a developed model, rather than finding a solution to a specific problem 
of interest for a practitioner. More effort should be spent on putting theory into practice. 
Dekker and Scarf (1998) concluded that maintenance optimisations are often far from 
complete for practical decision making. Especially in the multiple component setting, 
we are only at the beginning. Horenbeek et al. (2011) similarly claimed that 



41

maintenance optimisations are limited to very specific problems. Maintenance 
optimisations should be multiple objective optimisations whereas single objective 
optimisations seem dominant (Wang H. , 2002), (Horenbeek, Pintelon, & Muchiri, 
2011).

Maintenance optimisations have extensively been reviewed (Dekker, 1996), (Pham & 
Wang, 1996), (Dekker, Wildeman, & Duyn Schouten, 1997), (Wang H. , 2002),
(Nicolai & Dekker, 2008), (Wang W. , 2012), (Sharma, Yadava, & Deshmukh, 2011).
However, the library on maintenance optimisations has been growing faster than 
recordings of their implementations. The reasons for the limited implementation of 
maintenance optimisations may be found in the lack of data, the lack of knowledge 
about the models or the lack of maturity in maintenance management (Dekker, 1996),
(Dekker & Scarf, 1998). Dekker (1996) expected that a better performance to costs ratio 
of computers, automatic data capturing and an increasing maturity of maintenance 
management would contribute to a wider implementation.

This survey indicated that maintenance optimisations predict a future from a given 
maintenance policy that is attainable. Maintenance optimisations therefore presume a 
causal model that predicts the future effect of a maintenance policy. This causal model 
typically relies on expert judgement about prospects. This survey revealed that there is 
little reason to believe that maintenance policies are optimal in practice. Still, the effects 
of maintenance optimisations should become somehow observable to make them 
meaningful to practitioners and scientists. The maintenance policy validation potentially 
contributes to this essential empiricism.

3.3.2 Satisfice maintenance

Simon (1955), (1956) proposed an alternative choice mechanism that is less demanding 
for a decision maker’s psychological and physiological abilities than an optimisation.
This choice mechanism may bear closer resemblance to the actual decision making 
process. A satisficing decision maker may just start by estimating the effects of the first 
alternative he arrives at by intuition. If the effects satisfy the requirements derived from
his objectives, he stops deliberating. If not, he will continue to look for an alternative 
that meets his requirements. If it appears very easy to find alternatives that meet 
requirements, aspiration levels may rise. If requirements appear to be unattainable, 
aspiration levels lower. Satisficing only presumes that decision makers sincerely intend 
to pursue objectives. Satisficing does not prohibit optimisation in specific cases, it just 
alleviates some presumptions of optimisation:

- The set of actions is fixed; like in any design problem, generating a fixed set of 
actions that includes the optimal action often appears to be a burden. At the 
expense of missing the optimum, a satisficing decision maker just generates 
actions until he finds a satisfactory one.

- The expected utility, given an action, is known; the attributes of a utility 
function and its parameters are typically hard to assess. A satisficing decision 
maker may alleviate the burden of a precise introspection of his trade-offs by 
just assessing fulfilment of requirements. 
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- The decision maker should seek the optimal action; deducing an optimum from 
a highly dimensional model may require a huge calculating effort. A satisficing 
decision maker just assesses fulfilment of requirements.

Many others (Kahneman & Tversky, 1979), (Hammond, Steward, Brehmer, & 
Steinmann, 1975), (Hogarth, 1980) similarly recognised that maximising expected 
utility often does not adequately describe the actual process of decision making.

Satisficing appeals far more to our intuition about the actual process of maintenance 
policy assessments than optimising does. Satisficers only need to know that some effect 
fulfils a requirement depending on a decision whereas optimisers need to know how
exactly some effect depends on a decision. A satisficing argument that only refutes an 
independence presumption may already suffice, whereas an optimising argument needs 
to confirm a specific dependence presumption. So, the satisficing argument is too 
modest to enable the functionality predictions that are essential for optimal decisions. 
Still, a satisficing argument that only relies on a modest independence presumption may 
already suffice for the maintenance policy validation.

Unlike optimising, satisficing does not require a universal model that specifies the 
strength and the direction of the causality between maintenance policy compliance and 
functionality. In fact, satisficing is problematic with regard to the second causality 
principle (Section 2.3.3) that asserts that causal relationships remain constant in 
direction throughout time. This is because maintenance policy violations may turn out 
to be opportunities which enable a satisficer to gradually improve the suboptimal 
maintenance policy. Satisficers just accept that some decisions to carry out maintenance
may appear to be unjustified and in this strict sense, a satisficed maintenance policy is 
not expected to cause functionality. Still, a justified maintenance policy should -even 
under satisficing- generally increase functionality. The maintenance policy validation in 
this work could potentially reveal the adequacy of a satisficed maintenance policy. The 
better a maintenance policy approximates the optimum, the better maintenance policy 
compliance generally causes functionality.

If maintenance decision makers in practice prefer satisficing to optimising, scientists 
pursuing a maintenance policy validation may exhibit a similar attitude. Why would
scientists be willing to validate a presumed universal causal model that maintenance 
decision makers refuse to construct in the first place? As a result, an argument that just 
tests for independence between maintenance policy compliance and functionality may 
adequately balance the analysis burden with the modesty of the maintenance policy 
validation. All candidate arguments that we will introduce in Chapter 4 are of use for 
satisficers, but only the candidate arguments in Section 4.1 and Section 4.2 presume a 
specific dependence between maintenance policy compliance and functionality that 
optimisers need.

3.3.3 Knowledge about non-causality assumptions

In Section 3.3.1 and Section 3.3.2, we suggested that satisficing rather than optimising 
seems to be the applied choice mechanism in maintenance policy assessments.
Tentatively, the argument of the maintenance policy validation should just test for the 



43

modest presumption:

Maintenance policy compliance and functionality are independent.

A test for this independence presumption serves the aim of this work in Section 1.3 as 
well as maintenance decision making. In this section, we will show that independencies 
enable a simplified representation of the universe that is beneficial for both satificers 
and optimisers.

Example
- Let the variables A,B,X,Y represent the universe as depicted in Figure 9.
- Let A,B represent variables that are under the decision maker’s control.
- Let X,Y represent the decision maker’s objectives that a decision maker cannot directly control.

Then, the decision maker may wish to know what X,Y he obtains when choosing A,B. So, the conditional 
probability Pr(X,Y|A,B) is important for the decision maker.

Universe ={a,b,x,y}

A B C

XA

YB

XA

YB

XA

YB

Figure 9 Path graphs of non-causality assumptions in some tentative universes

In the case Figure 9A reflects the true universe, A,B,X,Y are independent variables. The conditional 
probability Pr(X,Y|A,B) then reduces to:

, | , ( , | , ) = ( ) × ( ) 31

Equation 31 implies that A,B appear to be superfluous conditions for the joint distribution of X,Y. 
Control over A,B does not contribute to the decision maker’s objectives whereas X,Y is a matter of 
destiny. In this universe, the decision maker does not need any model that assists in choosing the optimal 
A,B. Including A,B in some information set V does not reduce epistemic uncertainty about X,Y.

In the case Figure 9C reflects the true universe, A XY and B XY. The conditional probability 
Pr(X,Y|A,B) then reduces to:

, | , ( , | , ) = | , ( | , ) × | , ( | , ) 32

Equation 32 implies that the decision maker cannot control X without affecting Y and vice versa. Control 
over the system is complicated since control over X,Y requires a simultaneous manipulation of A,B. In 
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this universe, the decision maker needs a complicated model that assists in choosing the optimal A,B.
Including A,B in some information set V

In the case Figure 9B reflects the true universe, A X and B Y. The decision maker has full control 
over X,Y by choosing A,B independently. In this universe, the decision maker may decompose the model 
that assists in choosing the optimal A,B into two simpler models: one to steer X by A and one to steer Y
by B as shown in:

, | , ( , | , ) = | ( | ) × | ( | ) 33

Equation 33 implies that we could decompose the universe into an information set V={a,x} and 
V’={b,y}.

In the extreme case of Figure 9A, any maintenance policy that controls A,B appears to be superfluous 
because A,B,X,Y are presumed to be independent. In the ideal case of Figure 9B, the objectives X and Y 
are independently controlled by A and B respectively. So, the optimisation problem is decomposable into 
two simpler optimisation problems A X and B Y. Although Figure 9C requires less non-causality 
assumptions, the objectives X,Y are only attainable by simultaneous control over A,B. So, this more 
complex optimisation problem in Figure 9C is not decomposable. Therefore, this example showed that
knowledge about independencies could reduce the optimisation burden.

This example showed that a universal independence presumption reduces the 
complexity of the model. In practice, the decision maker does not know the causal 
structure of the universe, but he may try to infer it. The simpler decomposable model
from Equation 33 is more efficient to infer than the more complicated model from 
Equation 32. Spirtes (2000) and Pearl (2010) similarly reduced the burden of estimating 
a joint probability distribution by non-causality assumptions (Markov condition).
Variables known to be independent can be eliminated from an information set V 
without an increase in epistemic uncertainty. Suh (2001) similarly illustrated the 
importance of knowledge about independencies to simplify a design.

A test for independence may reveal that functionality K depends on maintenance policy 
compliance L whereas a test for some dependence may reveal how functionality K 
depends on maintenance policy compliance L. Of course, a test for independence is too 
modest to be compelling for an optimal maintenance policy, but both optimisers and 
satisficers benefit from an allowance to simplify their representation of the universe. 
This allowance to simplify the universe also contributes to the sampling efficiency that 
we need for the maintenance policy validation.

3.3.4 Reliability centred maintenance process

Reliability centred maintenance seems to be a widely used process to assess a
maintenance policy. Moubray (2004) defined reliability centred maintenance as:

A process used to determine what must be done to ensure that any physical asset 
continues to do what its users want it to do in its present operating context.

This definition tends to support a confirmation of the proposition:

Maintenance policy compliance causes functionality.
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when labelling “what must be done” as maintenance policy compliance L and 
“continues to do what its users want it to do” as functionality K. Moubray (2004)
departed from a quest for the item’s functions whose performance standards capture the 
organisation’s aspiration levels. This resembles the satisficing approach.

To be admissible to a maintenance policy, a candidate decision to carry out maintenance
should pass a technical feasibility rule. Moubray (2004) has been very explicit about 
these technical feasibility rules that are based on a dichotomous functionality variable 
that defines the item’s state by:

= 0,   1,                (=   ) (=   ) 34

A trigger that makes a decision to carry out maintenance technically feasible may be 
found in:

- The item’s age (time based maintenance);
- The item’s downstate (corrective maintenance);
- Any other variable (condition based maintenance).

Corrective maintenance is triggered by a downstate. Controversy about the technical 
feasibility of corrective maintenance only derives from controversy about the 
(subjective!) assessment of functionality Y in Equation 34.

time

ha
za

rd
 ra

te

t 2t

Figure 10 Technical feasibility rule of time and condition based maintenance

Time and condition based maintenance are triggered by a steeply increasing hazard rate 
(Figure 10). A hazard rate follows from unobservable probabilities that are built on 
some prospective functionality Y. 

Underpinning
A hazard rate is a limit, if it exists, of the quotient of the probability that the failure of a repairable item 
occurs within the time interval t after a time t, when t tends to zero, given that the failure has not 
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occurred in the interval between now (t=0) and the time t:

( ) = lim ( + ) ( ) × 1( ) = ( )( ) 35

In Equation 35, the failure density function f(t) and the reliability function R(t) have been built on a 
prospective dichotomous state variable Y:

= lim (0)
[ , ](1) = lim ( = 0)( ( = 1)) 36

Therefore, the hazard rate ht is a ratio of probabilities on the values of Y . In the case of a 
maintenance policy assessment, these probabilities quantify the decision maker’s degree of certainty 
about the future functionality.

In the case of time and condition based maintenance, a decision maker believes that he 
lowers the hazard rate in [t,2t] by a decision to carry out maintenance at a time t as 
represented by the dotted line in Figure 10. This lowering of the hazard rate is time 
bound; i.e. decision makers typically do not want to wait too long for a lower hazard 
rate. We therefore specifically seek short-term effects of maintenance policy 
compliance. Moreover, short-term effects also attribute to common sense about 
causality. Although spatiotemporal proximity is not among the causality principles
(Section 2.3.3), a relation between flapping butterfly wings here and a remote hurricane 
weeks later is unlikely to be causal (Lorenz, 1972). This butterfly effect would typically 
require many mediating variables. Then, the flapping of the butterfly wing by itself does 
not uniquely explain this hurricane as required by the third causality principle (Section
2.3.3).

The prospective hazard rates in Figure 10 may be based on the item’s age (time based 
maintenance) or on any other variable (condition based maintenance). Controversy 
about the technical feasibility of time and condition based maintenance may stem from 
controversy about the (subjective!) assessment of Y in Equation 34, but also from an 
inability to assess the probabilities for the hazard rate in Equation 36. Moubray (2004)
claimed that time based maintenance is rarely technically feasible because a strong 
dependence between the hazard rate and time appears to be exceptional. In addition, we 
pose that time by itself is unlikely to be the cause of functionality Y. Then, time is just a 
symptom that coincidentally associates with the true causes of functionality Y that 
should be controlled by a technically feasible maintenance policy. Moubray (2004) also 
signalled a growing importance of condition based maintenance. Revealing causalities 
from condition recordings is a potentially interesting alternative application of the 
causal inference we pursue in this work.

These technical feasibility rules in a maintenance policy appear to be common sense
(Birolini, 2007), (Crespo Marquez, 2007), (Kelly, 2006). So, decisions to carry out 
maintenance either stem from an observed downstate YT=0 or from some prospective
hazard rate reduction. Maintenance policy violations and functionality seem therefore 
related in a maintenance policy that is technically feasible. In practice, it is typically 
applied to the suspected cost drivers or the performance killers that predominantly affect 
the organisation’s aspirations. Resembling the satisficing approach, reliability centred 
maintenance appears to be an iterative journey to achieve continuous improvement. 
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However, the reliability centred maintenance process typically relies on fallible expert 
judgement whilst omitting a validation. The maintenance policy validation in this work 
may provide the essential empirical support to the reliability centred maintenance 
process.

3.4 Review of diagnostics

Diagnostics is directed to detecting symptoms of emerging item faults. By detecting and 
correcting at an early stage, we may avoid disastrous functionality effects. It is 
challenging to quickly identify symptoms of an emerging item fault among thousands of 
interacting components that are exposed to varying environmental loads. Diagnostic 
models may alleviate the burden of manual analysis. 

Diagnostics essentially attempts to reveal the true item state from a set of candidate item 
states. Resembling the maintenance policy validation, diagnostics typically reasons 
from recording routines. Detecting symptoms that are closely associated with some item 
states already suffices for diagnostics. For example, some vibrations may diagnose a 
certain amount of fatigue damage without being the cause of fatigue. So, diagnostics 
typically solves an identification or a classification problem by revealing the most likely 
item state, but diagnostics often appears to be inexplicit about the decision to restore or 
preserve functionality. In many cases, this decision seems obvious by expert judgement. 
Therefore, it often does not matter that diagnostics remains inexplicit about causality.
However, decisions that only control associated symptoms are insufficient. Therefore,
the maintenance policy validation looks for an empirical confirmation of the causality
between maintenance policy compliance and functionality. In this sense, the 
maintenance policy validation differs from diagnostic conventions.

Diagnostics matured into a vivid area of research with a wide variety of approaches. 
This concise introduction adopts the classification from Venkatasubramanian et al.
(2003) and Chiang et al. (2001):

- Quantitative model based diagnostics (analytical);
- Qualitative model based diagnostics (knowledge based);
- History based diagnostics (data driven).

This classification does not partition diagnostic arguments into jointly exhaustive and 
mutually exclusive sets. Venkatasubramanian et al. (2003) did not find a diagnostic 
argument that universally outperforms all others, whereas the interest in hybrid 
arguments is increasing.

Similar to our approach to inference precision, Venkatasubramanian et al. (2003)
suggested that the choice of a diagnostic argument heavily relies on the sampled 
evidence and on in-depth knowledge about the model. We do not expect to put forward 
an inference that is best suited to any maintenance policy validation. 

Diagnostics supports operational as well as maintenance decisions. From the 
perspective of the item, it does not matter whether an operator or a maintainer performs 
the repair (Nakajima, 1988). Recordings of the maintenance workload may therefore 
appear to provide incomplete evidence that usually only captures the bigger and more 
specialised decisions to carry out maintenance.
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3.4.1 Quantitative model based diagnostics

Quantitative model based diagnostics presumes an algebraic function that defines the 
interactions between the antecedents and the conclusion. Therefore, electromechanical 
systems whose working principles rely on physical laws are often suitable for 
quantitative model based diagnostics. Man-machine interactions appear generally more 
difficult to capture in algebraic functions. Quantitative model based diagnostics reasons 
from observer redundancy or from analytical redundancy. Observer redundancy implies 
that several sensors measure the same variable. So, observations should be equal. 
Analytical redundancy relates observations by physical laws. Conflicting observations 
are then symptomatic for emerging faults.

Quantitative model based diagnostics on large systems may require excessive modelling 
effort and sensor information may be incomplete. Quantitative model based diagnostics 
may well perform in predicting behaviour that has not yet been observed. We refer to 
Frank et al. (2000), Isermann (2005) and Venkatasubramanian et al. (2003) for a more 
in-depth discussion.

3.4.2 Qualitative model based diagnostics

Qualitative model based diagnostics presumes a qualitative function that defines the 
interactions between the antecedents and the conclusion. Qualitative functions are less 
precise than algebraic functions since they are of a categorical nature. They take for 
example values like (more, equal, less) or (normal, abnormal). At the expense of 
precision, qualitative model based diagnostics may efficiently approach complex 
systems that comprise human interference. The applicability of qualitative model based 
diagnostics is confined to the values of the model’s categorical variables. So, it cannot 
reason about subsets within a category.

Qualitative model based diagnostics supports abductive, inductive and deductive 
arguments. By abductive reasoning, we arrive at faults that could explain the symptoms.
Qualitative model based diagnostics then assists in finding a subset of plausible faults. 
By inductive reasoning, we arrive at faults that did explain the symptoms in the past. In 
this way, we may infer some rules that direct us to likely faults. By deductive reasoning, 
we may refute faults that cannot apply, given some symptoms. Then, we eliminate 
candidate faults, intending to end up with one remaining fault.

Instances of qualitative model based diagnostics are found in applications of directed 
graphs, fault tree analysis or qualitative physics. We refer to Venkatasubramanian et al.
(2003), Kleer and Brown (1984), Vesely (2002) and Gao et al. (2010) for a more 
extended introduction.
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3.4.3 History based diagnostics 

History based diagnostics does not require any a priori knowledge about the model 
parameters. It just infers associations among past observations. An association does not 
suffice for a cause, as we saw in Section 2.3. This means that history based diagnostics 
alone is not compelling for causality. It is unable, therefore, to reason about unobserved
changes in the structure of the system or its environment. So, history based diagnostics 
is vulnerable to future (beyond sample) changes in background variables that delimit 
any inductive argument. History based diagnostics may comprise qualitative solutions 
like expert systems (Rich & Venkatasubramanian, 1987) and qualitative trend analysis 
(Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003), (Cheung & 
Stephanopoulos, 1990), (Villez, Rosen, Anctil, & Vanrolleghem, 2013). Quantitative 
solutions comprise neural networks (Zorriassatine & Tannock, 1998) and statistical 
inferences (MacGregor & Cinar, 2012).

3.5 Review of prognostics

Prognostics has many applications including biostatistics, econometrics, operational 
research, reliability, materials science (Si, Wang, Hu, & Zhou, 2011). In a maintenance 
decision making context, prognostics may infer prospective functionality from a given 
choice to maintain or not to maintain. Prognostics therefore comprises some modus 
ponens reasoning about prospective functionality from given antecedents about the past 
and present and some type of predictive model. Tentatively, the maintenance policy 
validation can be reduced to a validation of a prognostic model in retrospect. In this 
section, we will explain that (i) prognostics typically represents prospective
functionality by a remaining useful life, that (ii) prognostics typically takes physical 
variables rather than maintenance policy compliance as antecedents and that (iii)
prognostics does not require its antecedents to cause prospective functionality as 
required by the maintenance policy validation.

All definitions of prognostics in Sikorska et al. (2011) refer to a dichotomous 
functionality variable as shown in:

= 1,   , ,   , …0,   , ,   , …  37

Si et al. (2011) recognised that Y is subjective and dependent on context and operational 
characteristics. Si et al. (2011) did not seek for common sense about Y since their main 
interest was directed to the modelling methods for remaining useful life (RUL) 
estimations. A maintenance policy validation, however, requires common sense about 
functionality Y.

Prognostics may in principle predict any future trajectory of Y, but to serve efficiency, 
we delimit to a remaining useful life Y[1,T]=1 which is often of primary interest. 
Reliability expresses our degree of certainty about surviving a specific time interval 
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(CEN, 2001), (ARMP-7, 2008), (IEC, 1990):

Reliability is the ability of an item to perform a required function under given 
conditions for a given time interval.

Uncertainty about a remaining useful life seems to be predominantly approached in a 
probabilistic way. We omit other approaches to uncertainty (Halpern, 2005), (Aven, 
2011). We therefore quantify the “ability” in this reliability definition by a probability 
function built on a remaining useful life as shown in:

[ , ] = = 1| 38

In a similar way to causality, the assessment of a probability is encumbered with 
problems. To explain a decision maker’s maintenance policy prospectively, a 
probability may follow from the decision maker’s beliefs about the future as we 
explained in Section 3.1. To validate this probability retrospectively, we typically use
observed frequencies. 

The body of knowledge U in Equation 38 is assignable to some fictitious individual.
This fictitious individual may for example involve the item’s current age to assess his 
functionality prospects:

[ , ] = = 1| = = 1 , … 39

A remaining useful life in Equation 39 reflects the item’s survival till T+N, given that it 
survived up to T. Jardine et al. (2006) identified that a remaining useful life is the most 
obvious and widely used predictor variable in prognostics. A remaining useful life 
indicates how much time is left before a failure occurs.

Banjevic (2009) mentioned that a full distribution of a remaining useful life is 
sometimes just characterised by its expectation. An alternative for remaining useful life 
modelling is delay time modelling (Christer, 1973) that infers an expected number of 
failures given some inspection interval. Wang (2012) reported delay time modelling 
extensions to multiple component items, to imperfect inspections or repairs and to
multiple inspection intervals. Applications of delay time modelling were found in 
building, manufacturing, energy production, transportation and electronics. Baker and 
Wang (1991) and Christer et al. (1995) presented some applications that depart from 
observable evidence. Since delay time modelling is confined to inspections which are 
only part of a maintenance workload, we will not proceed in this direction.

If reliability R[1,T] is a decreasing continuous function r(t), it is exchangeable with a
hazard rate h(t):

( ) = lim ( + ) ( )( ) = ( )( ) 40
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The proportional hazard model (Cox, 1972) and its ramifications (Gorjian, Ma, Mittinty, 
Yarlagadda, & Sun, 2010) are based on the hazard rate h(t). A hazard model does not 
require knowledge about the distribution of the item’s entire life in the same way as a 
reliability model would do. Rather, a hazard model allows to be instantaneously 
adjusted by unforeseen events as they occur during the item’s life. Hazard models are 
better at coping with varying operating conditions than reliability models since they 
avoid longitudinal redundancy. Therefore, a hazard model complies better with the 
construction rules for maintenance performance indicators (Section 3.2) than a 
reliability model or a remaining useful life model. This work will reveal the feasibility 
of a maintenance policy validation which relies on a model that maps maintenance 
policy compliance to a hazard rate.

Sikorska et al. (2011) surveyed some classification schemes of reviews on prognostics 
and recognised little consensus. Reviews on prognostics tend to make predictions from
physical variables (Foucher, Boullié, Meslet, & Das, 2002), (Sikorska, Hodkiewicz, & 
Ma, 2011), (Si, Wang, Hu, & Zhou, 2011), (Jardine, Lin, & Banjevic, 2006), (Peng, 
Dong, & Zuo, 2010). So, the body of knowledge U in Equation 39 typically comprises
values of physical variables. These variables may be causal for the item’s downstate 
(direct condition monitoring information) or just associated (indirect condition 
monitoring information). For risk identification alone, an association may suffice. But 
for decision making, control over a variable that is only associated is insufficient.

Abernethy (2006) warned that Equation 39 is already hard to validate empirically for a
body of knowledge U that only comprises age due to a lack of replications. Extending 
this body of knowledge U with values of maintenance policy compliance L is expected 
to even make sampling efficiency worse. We also did not find prognostic applications 
that admitted maintenance policy compliance values to their body of knowledge U.
Possibly, maintenance policy compliance values appear to be an unattractive element of 
the body of knowledge U.

3.6 Findings regarding the approach

In Section 1.4, we explained that our approach comprises a choice of (i) an argument, 
(ii) an operationalisation and (iii) a sampling procedure. We now survey the findings
from the literature review regarding these choices.

3.6.1 Findings regarding the choice of an argument

We identified that maintenance stems from decisions. If decisions were independent of 
any future effect, decision makers would not bother about the choices they make.
Decision makers who are bothered do at least have an intuitive causal model in mind 
which helps them to reason about prospective effects that matter. In Section 3.3, we 
introduced some practices of maintenance policy assessment from which we concluded 
that decision makers resist maintenance optimisations. Maintenance optimisations often 
impose demands on the decision maker’s introspective and analytical capabilities that 
are too heavy. In practice, maintenance decision making seems to take place through a 
type of satisficing approach, which although alleviating analytical encumbrance, only 
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results in an acceptable rather than an optimal policy. A maintenance policy validation 
that only relies on:

Maintenance policy compliance and functionality are independent

similarly omits the burden of model selection that satisficing decision makers resist 
taking. Moreover, knowledge about independence enables both satisficing and 
optimising decision makers to simplify their representation of the universe. This work
will reveal the feasibility of a maintenance policy validation that relies on this presumed 
independence.

Decisions can only influence a yet to be observed future. So, decision making therefore 
resembles a modus ponens reasoning about prospects. Since the prospects are in the 
unobservable future, they cannot be validated a priori. However, a decision maker may 
learn from the past and the present to enhance assessment of his prospects. In this way, 
a maintenance policy validation could provide data driven support to decisions to carry 
out maintenance that are up until now have typically been expert driven.

Similar to selecting an appropriate diagnostic or prognostic argument, we do not expect 
that any single argument will universally outperform all others in inference precision. 
Depending on the case, a suitable argument needs to be sought iteratively. The
candidate arguments for the maintenance policy validation will cover model based and 
history based approaches that take cardinal as well as categorical samples.

In Section 3.4 and 3.5, we showed that prognostics and diagnostics typically reason 
from physical variables that are often collected at high sampling rates. Common sense 
about the operationalisation of physical quantities and about the presumed (physical) 
models may wildly differ for the maintenance policy validation that relies on
maintenance performance recordings and man-machine-models. As a result, prognostic 
or diagnostic arguments that have been thoroughly explored may seem to be
inappropriate. Moreover, symptoms already suffice for a risk assessment, but gaining 
control over nothing else but a symptom does not suffice to achieve the targeted goal.
The maintenance policy validation therefore takes a notion of causality in its argument 
that is not essential in many prognostic and diagnostic applications.

3.6.2 Findings regarding the choice of an operationalisation

Any decision maker may pursue his disputable preferences. In Section 3.1, we 
explained that normative decision theories typically suffer validation issues. A
maintenance policy may seem to be an exception since it triggers decisions at a high 
rate and the abundant policy violations are typically also recorded. Maintenance policy 
compliance essentially measures to what extent “choosing” and “doing” correspond,
which may enable us to distinguish the pursued effect from the counterfactual effect. 
Still, the criterion to identify maintenance policy compliance comprises a subjective 
requirement.

In Section 3.2, we extended the idea that decisions to carry out maintenance typically 
involve groups of decision makers. Any organisation stems from a choice to align 
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individual preferences with the group preference. To allow decision makers to align, 
organisations use performance indicators to define common sense about preference.

A conventional maintenance scorecard comprises leading and lagging performance 
indicators. The leading performance indicators may reflect common sense about 
maintenance policy compliance and the lagging performance indicators may reflect 
common sense about the pursued effect. So, the maintenance policy validation may use
this common sense evidence. Although leading performance indicators are thought to 
cause lagging performance indicators, we suspect that they are merely used to show 
fulfilment of requirements in retrospect.

In Section 2.3, we already explained that the operationalisation of causality is 
particularly problematic under an observational research construct. Because it is often 
not possible to carry out well-constructed experimental research in the context of
maintenance decision making, we resort to a modest notion of prima facie causality that 
uses time to raise credence in causality.

3.6.3 Findings regarding the choice of a sampling procedure

In a much better way than when using averages, variations can teach us about causal 
interactions. Nevertheless, conventional maintenance performance indicators are,
typically, averages that level out all variations. This is why we deemed conventional 
maintenance performance indicators as inappropriate for causal inferences in Section
3.2. However, since decisions to carry out maintenance can only influence the future, a
dithering decision maker will normally need to have more precise knowledge about 
prospective causal effects. In order to infer these causal effects more precisely from an 
organisation’s recording routines, we put forward several construction rules for 
maintenance performance indicators. 

This work will verify whether these construction rules for maintenance performance 
indicators do, indeed, infer (prima facie) causalities more precisely. Despite a correct 
application of these construction rules, we may still fail to collect sufficient evidence to 
validate any candidate argument. Eventually, we would existentially conclude that 
maintenance is unjustifiable.
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4 Choice of an argument

Our approach to inference precision requires a set of candidate arguments as explained 
in Table 2. In this chapter, we will put forward these candidate arguments, which differ 
in structure and potentially, in inference precision as well. Although the inspiration for 
these candidate arguments came from typical inferences in reliability engineering, 
maintenance optimisation and maintenance prognostics, we do not intend to formally 
define these dynamic research areas using the arguments we present here. We have 
merely labelled these arguments according to their source of inspiration.

We will confine ourselves to arguments that comprise propositions that are observable 
by common sense. This delimitation is far from trivial, since many inferences in 
reliability engineering, maintenance optimisation and maintenance prognostics seem to 
use arguments that do not explicitly involve observable evidence. Rather, these 
inferences are only about presumed probabilities whose assessment has been ignored.
However, because we are aiming here for a maintenance policy validation, what we 
require is observable evidence.

For brevity, we will present the candidate arguments as one-step-ahead predictions of 
functionality KT+1 but their extensions to enlarged information sets are straightforward.
So, the candidate arguments as we present them, may validate the prima facie causality 
LT KT+1 with respect to an information set V={lt,kt,kt+1}:

| , ( | , ) | ( | )     ; ( ) 41

Equation 41 is just an instance of the prima facie causality definition in Equation 5,
given a body of knowledge U={lt,kt} that comprises two candidate causes for 
functionality KT+1:

- Functionality KT because the sampling rate should allow the original signal to be 
reconstructed. We therefore expect a dependence between KT and KT+1 that 
could eventually reduce an association between LT and KT+1 to a spurious cause 
resembling the case in Figure 8.

- Maintenance policy compliance LT because this work is about a causality
between maintenance policy compliance and functionality.

Ultimately, the composition of the information set V depends on the evidence available. 
The evidence may allow for extended information sets V={lt,kt,kt+1,…} but we may also 
fail to reach sufficient inference precision even at the reduced (minimal) information set 
V={lt,kt+1} that we will discuss in Section 5.4.3. In the latter case, we would 
existentially conclude that maintenance is unjustifiable.

An arbitrary choice of an information set V is known to hamper inference precision. For 
example, a decision maker could guess the functionality KT+1 of some item he does not 
know. In that case, this decision maker has no evidence on which to base favouring any 
value of functionality KT+1. However, if this decision maker knew the item and its past, 
i.e. he had access to a more complete information set V, his guess might have differed 
wildly. In this example, it was the decision maker’s knowledge, rather than the item 
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itself that determined the prediction of functionality KT+1. Unsurprisingly, the subjective 
reliability estimates from operators and senior reliability engineers often wildly differ, 
since their knowledge about the item differs considerably.
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Figure 11 Path graphs of the candidate arguments

The candidate arguments differ in their non-causality assumptions (missing arrows) as 
surveyed by the path graphs in Figure 11. These non-causality assumptions are required 
to interpret the inferred prima facie causality in Equation 41 as causal. For the relation 
between maintenance policy compliance LT and functionality KT+1:

- The maintenance optimisation argument (MOA in Figure 11) does not presume 
a specific relation between LT and KT+1;

- The maintenance prognostic argument (MPA in Figure 11) presumes a universal 
model that defines either a causality or a non-causality between LT and KT+1;

- The reliability engineering argument (REA in Figure 11) does not presume a
specific relation between LT and KT+1, i.e. since LT has been held constant, any 
dependence or even independence between LT and KT+1 may apply;

- The nonparametric argument (NPA in Figure 11) presumes universal 
independence between LT and KT+1.

For the relation between functionality KT and KT+1:
- The maintenance optimisation argument (MOA in Figure 11) does not presume 

a specific relation between KT and KT+1;
- The maintenance prognostic argument (MPA in Figure 11) presumes a universal 

model that defines either a causality or a non-causality between KT and KT+1;
- The reliability engineering argument (REA in Figure 11) presumes a universal 

model that defines either a causality or a non-causality between KT and KT+1;
- The nonparametric argument (NPA in Figure 11) does not presume a specific

relation between KT and KT+1, i.e. since KT has been held constant, any
dependence or even independence between KT and KT+1 may apply.
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For the relation between maintenance policy compliance LT and functionality KT:
- The maintenance optimisation argument (MOA in Figure 11) presumes a 

universal equivalence between LT and KT by definition which reduces LT and KT
to redundant variables;

- The maintenance prognostic argument (MPA in Figure 11) presumes universal 
independence between LT and KT; i.e. an eventual association between LT and 
KT+1 is presumed to be unexplainable by a mediating or by a confounding KT;

- The reliability engineering argument (REA in Figure 11) presumes universal 
independence between LT and KT; i.e. an eventual association between LT and 
KT+1 is presumed to be unexplainable by a mediating or by a confounding KT;

- The nonparametric argument (NPA in Figure 11) does not presume a specific 
relation between LT and KT; i.e. an eventual association between LT and KT+1 is 
unexplainable by mediation or by confounding of a constant KT.

Finally, for the relation between the background variable B and the elements in the 
information set V:

- The maintenance optimisation argument (MOA in Figure 11) does not presume 
a specific relation between LT, B (and KT, B);

- The maintenance prognostic argument (MPA in Figure 11) presumes universal 
independence between LT, B and KT, B, but B may cause an error in the 
estimation of KT+1;

- The reliability engineering argument (REA in Figure 11) presumes universal 
independence between KT and B, but B may cause an error in the estimation of 
KT+1;

- The nonparametric argument (NPA in Figure 11) presumes universal 
independence between LT and B, but B may cause an error in the estimation of 
KT+1.

The four variables B, LT, KT and KT+1 of the maintenance prognostic argument, the 
reliability engineering argument and the nonparametric argument tentatively allow for 
2(3+2+1)=12 non-causality assumptions, i.e. missing arrows in Figure 11. The non-
causality assumptions KT+1 LT and KT+1 KT seem innocuous by the first causality 
principle (Section 2.3.3) asserting that an effect cannot precede its cause in time and the 
existence of the causality KT+1 B is just irrelevant in this work. However, a non-
causality assumption with an unobserved background variable B cannot be validated 
empirically which affects inference precision. The reliability engineering argument and 
the nonparametric argument alleviate the burden of non-causality assumptions that 
involve B by holding some variable constant to rule out its eventual causal effects. 
However, a requirement of a constant implies an additional constraint on the 
composition of the sample (l,k)[1,t] that may not be satisfied under an observational 
research construct.

A preference for the candidate arguments is expected to be driven by:
- The amount of in-depth knowledge about the non-causality assumptions in 

Figure 11;
- The efficiency to collect a sample (l,k)[1,t] that meets the requirements.

From the candidate arguments in Figure 11, the maintenance prognostic argument 
appears to be most restrictive in its non-causality assumptions and most permissive 
about its sampling requirements. The nonparametric argument on the contrary, appears 
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to be most restrictive in its sampling requirements and most permissive in its non-
causality assumptions.

This chapter will introduce the candidate arguments by (i) explicitly stating their 
propositions, by (ii) discussing their claim about the prima facie causality in Equation 
41, and by (iii) discussing their sampling issues. We conclude with a preliminary 
assessment of the inference precision of a maintenance policy validation based on these
candidate arguments in Section 4.5

4.1 Maintenance optimisation argument

This section will introduce the maintenance optimisation argument by (i) presenting its 
propositions in Section 4.1.1, by (ii) discussing its claim regarding the prima facie 
causality in Equation 41 in Section 4.1.2 and by (iii) discussing its sampling efficiency 
in Section 4.1.3. We labelled this argument as the maintenance optimisation argument 
because we found many maintenance optimisations that presumed queue membership 
(present/absent) and functionality (upstate/downstate) as being equivalent. In that case,
a policy to control the queue LT equivalently controls functionality KT.

4.1.1 Claim of the argument

This section will explain what the maintenance optimisation argument claims about the 
relation between its antecedent P1 and its conclusion C1.

P1 ( = )
;Observe maintenance policy compliance lt

M1 ( = ) ( = )
;Presume that lt and kt are equivalent

C1 =
;Follows from P1,M1

Valid argument: Yes
Functional relation: Yes, this equivalence relation maps every lt to a single value kt
Common sense evidence: -
Universal argument: Yes, some stratified sample (l,k)[1,t] could universally refute the argument.
Decidable argument: Yes, only the presumed model M1 is controversial.

Figure 12 Maintenance optimisation argument

Figure 12 depicts the maintenance optimisation argument, where P1 indicates the 
proposition, M1 indicates the model and C1 the conclusion. The proposition P1 and the 
conclusion C1 straightforwardly follow from common sense about a sample (l,k)[1,t], but 
the presumed model M1 is controversial. 

The stratified sample (l,k)[1,t] may existentially confirm the model M1 but it may also 
comprise a single counterexample that universally refutes the model M1. So, 
particularly in the case of a refutation, the maintenance optimisation argument is 
decisive about its presumed model M1.
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The maintenance optimisation argument just presumes an equivalence relation between 
maintenance policy compliance LT and functionality KT but it does not presume 
anything about the future functionality KT+1. The maintenance optimisation argument 
therefore lacks the predictive capabilities that are essential for decision support.

4.1.2 Claim about prima facie causality

This section will explain what the maintenance optimisation argument claims about the 
prima facie causality in Equation 41. An equivalence relation (like the model M1) is 
more compelling than the causality principles (Section 2.3.3). For example as opposed 
to an equivalence relation, a causality is not symmetric (L L) and neither 
reflexive (L L). Still, the maintenance optimisation argument is potentially 
informative about the prima facie causality in Equation 41. If sound, the maintenance 
optimisation argument would refute the prima facie causality in Equation 41 because 
maintenance policy compliance LT is just a superfluous redundancy in an information 
set V={lt,kt,kt+1}. Granger (1980) therefore explicitly prohibited redundant variables 
(like LT,KT) to be separate elements in an information set V. If unsound, the 
maintenance optimisation argument would allow for any dependence or independence 
relation between LT and KT+1. So, the maintenance optimisation argument cannot 
confirm the prima facie causality in Equation 41. However, we suspect that 
functionality and maintenance policy compliance are not related in the same way as
centimetres and inches. So, we expect to find counterexamples that refute the 
maintenance optimisation argument. The presumed equivalence relation of the 
maintenance optimisation argument is therefore expected to be unnecessarily restrictive 
and not decisive about the prima facie causality in Equation 41. The path graph of the 
maintenance optimisation argument (MOA) in Figure 11 shows that the information set 
VMOA simply comprises a single element that may relate in any way to the background 
variable B. So, the maintenance optimisation argument omits a need to arbitrarily 
operationalise a notion of causality.

4.1.3 Sampling issues

We suspect that a stratified sample (l,k)[1,t] suffices to universally refute the maintenance 
optimisation argument while leaving the prima facie causality in Equation 41
undetermined. The maintenance optimisation argument admits all information sets 
V={lt,kt} from the sample (l,k)[1,t].

4.2 Maintenance prognostic argument

This section will introduce the maintenance prognostic argument by (i) presenting its 
propositions in Section 4.2.1, by (ii) discussing its claim regarding the prima facie 
causality in Equation 41 in Section 4.2.2 and by (iii) discussing its sampling efficiency
in Section 4.2.3. We labelled this argument as the maintenance prognostic argument 
because we found many attempts to reduce epistemic uncertainty about an item’s 
remaining useful life by knowledge about physical variables. It is possible that we 
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might similarly be able to predict the item’s functionality from maintenance policy 
compliance.

4.2.1 Claim of the argument

This section will explain what the argument claims about the relation between its 
antecedents and its conclusion.

P3 ( = , = )
;Observe functionality kt and maintenance policy compliance lt.

M2 3 =
;Presume a model M2 that estimates kt+1 from P3
; If M2 has nonzero parameters for LT, the second causality principle has been satisfied, i.e. a 
cause remains constant in direction throughout time
; If M2 has nonzero parameters for LT, the third causality principle has been satisfied, i.e. a cause 
comprises unique information about the effect that is not available otherwise
; Note that the model M2 is more compelling than needed for the causality principles because it 
universally maps the antecedent P3 to a single conclusion C2.

C2 =
;Follows from P3,M2

P4 =
;Observe functionality kt+1.

P5 4 3
; Presume this non-causality assumption P5.
; P5 satisfies the first causality principle, i.e. P4 cannot cause P3 since an effect does not precede 
its cause in time

P6 ( 4 2) 3
;Presume that prediction errors are independent of M2’s domain, i.e. all information from LT ,KT
about KT+1 has been captured in M2’s model parameters.

M3 ( 3, 2, 5, 6) ( 4)
;Presume this definition of the probabilities in Equation 41. P5 just strengthens a belief in a 
causal interpretation of this probability.

C3 ( 4)
;Concludes that any information set V={P3,P4} has been conceived as a replication. So, the 
maintenance prognostic argument holds for all l,k,t which is more restrictive than strictly needed 
for the prima facie causality in Equation 41.

Valid argument: Yes, but C2,C3,P5,P6 are not immediately observable
Functional relation: Yes, but M2,M3 map to conclusions C2,C3 that are not immediately 

observable.
Common sense evidence: -
Universal argument: No, some stratified sample (l,k)[1,t] does not suffice to observe the 

probability C3, but the maintenance prognostic argument addressed the 
three causality principles for LT KT+1 in M2,P5. 

Decidable argument: No, both the model M2 and the presumption P6 are controversial.

Figure 13 Maintenance prognostic argument
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The maintenance prognostic argument in Figure 13 comprises the presumptions 
M2,P5,P6,M3. Presumption P5 and model M3 do not appear to be controversial. 
Presumption P5 just reflects common sense about the causality principle that an effect 
P4 does not precede its cause P3 in time and model M3 appears to be a common sense 
operationalisation of a probability. Only model M2 and presumption P6 seem to be
controversial. Controversy about both the model M2 and the presumption P6 regarding
the errors makes the maintenance prognostic argument undecidable. This controversy 
could tentatively be settled by means of in-depth knowledge about a universal “man-
machine-law” that determines the structure of model M2. In conventional prognostics, 
controversy about the model M2 is often mitigated by in-depth knowledge about 
“universal laws of physics”. Presumption P6 in the maintenance prognostic argument 
alternatively denotes as:( 4 = 2 + 6 = 2( 3) + 6) ( = ( , ) + )               ; 42

Equation 42 shows that the distribution of functionality P4:KT+1=kt+1 is the sum of the 
model M2:f(lt,kt) and the error distribution P6: t+1 that are universal. The probability 
C3, which follows from the distribution of functionality P4:KT+1=kt+1 in Equation 42,
will then require in-depth knowledge about the model M2 and the error distribution 
P6: t+1. If we were to have this in-depth knowledge, the causality between maintenance 
policy compliance LT and functionality KT+1 would have followed from a universal 
equation 42 and maintenance would have been justifiable. So, it is the controversy about 
the model M2 and the presumption P6 that is problematic for the justifiability of 
maintenance. However, we suspect to only know some stratified sample (l,k)[1,t]. Then,
the maintenance prognostic argument may existentially claim the likelihood of some 
arbitrarily presumed model M2 and some arbitrarily presumed error distribution P6. 
These existential claims are vulnerable to extensions of the sample (l,k)[1,t] and to more 
likely presumptions about the model M2 and the error distribution P6.

The maintenance prognostic argument is geared to reducing the epistemic uncertainty 
about future (beyond sample) functionality, i.e. reducing the error term t+1. To reduce 
the error term t+1, a dependence between the antecedent P3 and the proposition P4 must 
exist. 

For prognostics to be effective, it is essential to know the nonzero parameters of the 
model M2 which map the antecedent P3 to the estimate C2. In-depth knowledge about 
the parameters of the model M2 enables reasoning about a yet to be observed future by 
the maintenance prognostic argument which is crucial for prospective decision making. 
In this work, however, we do not pursue a prospective inference but a retrospective
validation.

4.2.2 Claim about prima facie causality

This section will explain what the maintenance prognostic argument claims about the 
prima facie causality in Equation 41. A universally sound maintenance prognostic 
argument could potentially claim a causality LT KT+1 because its model M2 and its 
presumption P5 cover all three causality principles (Section 2.3.3). The model M2 even 
specifies what maintenance policy compliance LT uniquely attributes to functionality 
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KT+1 whereas we only need to know that maintenance policy compliance LT uniquely 
attributes to functionality KT+1 to justify maintenance. The maintenance prognostic 
argument therefore claims more than is strictly needed for the maintenance policy 
validation.

If sound, the maintenance prognostic argument would be decisive about a specific 
causality by the parameters of the model M2 rather than just about the existence of a 
prima facie causality between LT and KT+1. If unsound, the maintenance prognostic 
argument would only refute a very specific causality, but it would still allow that LT and 
KT+1 are causally related.

We suspect there is a lack of the in-depth knowledge required to settle the controversy 
about a universal model M2 that defines a causality or a non-causality between 
maintenance policy compliance LT and functionality KT+1 by its parameters. Therefore, 
we expect that the model M2 will remain controversial.

Eventually, the maintenance prognostic argument could existentially claim the 
likelihood of some presumed model M2 and some presumed error distribution P6.
However, we can only assess this likelihood of a limited subset of options for the model 
M2 and the error distribution P6 from a potentially infinite set of available options. 
Therefore, the maintenance prognostic argument is expected to be imprecise about the 
prima facie causality in Equation 41 because model uncertainty and parameter 
uncertainty cannot be resolved.

The path graph of the maintenance prognostic argument in Figure 11 specifies the non-
causality assumptions that we need to interpret an existential confirmation of the prima 
facie causality in Equation 41 as being causal. These non-causality assumptions do not 
just follow from inferred statistical associations and as a consequence the path graphs in 
Figure 11 are not entirely testable (Pearl, 2010), (Spirtes, Glymour, & Scheines, 2000).
The independencies (=bidirectional non-causality assumption in Figure 11) between LT,
B and KT, B are untestable because the background variable B remains unobserved and 
it is simply in-depth knowledge about the first causality principle (Section 2.3.3), which
asserts that the future cannot cause the past, that made us omit the arrows to the left in 
KT KT+1 and LT KT+1. However, the independence between LT and KT is 
straightforwardly testable from a sample (l,k)[1,t] which potentially allows us to be more 
precise about the causal interpretation of an existentially confirmed prima facie 
causality in Equation 41 by the maintenance prognostic argument.

4.2.3 Sampling issues

In the absence of in-depth knowledge about the model M2 and the error distribution P6,
the stratified sample (l,k)[1,t] does not suffice to validate the maintenance prognostic 
argument. Random assignment of treatments would have mitigated controversy about 
the treatment being the cause of some statistical association. Then, the following 
presumptions might have become tenable:

- A significant difference in the observed functionality P4:KT+1=kt+1 for the 
treatment group and the control group uniquely relies on the treatment;

- the error distribution P6 for the treatment and the control group is identical.
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These presumptions would have enabled likelihood assessments of some presumed
universal model M2. However, we have ignored costly experimental research to 
validate a maintenance policy despite these potential merits. As a result, the 
maintenance prognostic argument is expected to remain undecidable about the causality 
LT KT+1.

In Section 2.3.3, we introduced a more modest prima facie causality that only holds 
with respect to an information set V. Since it would be odd to conceive identical 
information sets V as distinguishable replications, we propose conceiving a replication 
which would then be a subset of V. In the case of the prima facie causality in Equation 
41, the information set V comprises the following elements:

- The element {kt+1} in V, claimed by the proposition P4, has been conceived as a 
trial from the probability function M3 in the maintenance prognostic argument;

- The elements {lt,kt} in V, claimed by the proposition P3, are independent of the 
prediction errors P6=P4-C2 in the maintenance prognostic argument.

From the above, it follows that any information set V could be seen as a replication 
from the probability function M3 in the maintenance prognostic argument. So, the 
observed frequency of the replications in the sample (l,k)[1,t] is t-1. The sampling
efficiency to obtain a sufficient number of replications seems high because the evidence 
(l,k)[1,t] is not scattered over several replications.

Finally, conventional prognostics relies on condition monitoring data that are sampled 
by supervisory control and data acquisition (SCADA) systems at a high rate. This 
allows us to efficiently collect time series that could reconstruct the original signal. 
However, a maintenance policy validation relies on maintenance performance 
recordings that are typically only tagged by calendar date. This daily sampling rate may 
not suffice to reconstruct the signal or to efficiently capture enough evidence. A typical 
prognostic argument may therefore not suffice for the maintenance policy validation.

4.3 Reliability engineering argument

This section will introduce the reliability engineering argument by (i) presenting its 
propositions in Section 4.3.1, by (ii) discussing its claim regarding the prima facie 
causality in Equation 41 in Section 4.3.2 and by (iii) discussing its sampling efficiency 
in Section 4.3.3. The reliability argument has been deduced from parametric 
(Abernethy, 2006) as well as nonparametric (Kaplan & Meier, 1958), (Coolen, Coolen-
Schrijner, & Yan, 2002) inferences of reliability.

4.3.1 Claim of the argument

This section will explain what the reliability engineering argument claims about the 
relation between its antecedents and its conclusion.

The reliability engineering argument in Figure 14 only differs from the maintenance 
prognostic argument by its reduction of model M2’s domain from proposition P3 to 
KT=kt. Therefore, the conclusion C3 of the reliability engineering argument only holds 
under a given maintenance policy compliance LT=lt.
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P3 ( = , = )
;Observe functionality kt and maintenance policy compliance lt.

M2 ( = ) =
;Presume a model M2 that estimates kt+1 from P3
; If M2 has nonzero parameters for KT, the second causality principle has been satisfied, i.e. a 
cause remains constant in direction throughout time
; If M2 has nonzero parameters for KT, the third causality principle has been satisfied, i.e. a 
cause comprises unique information about the effect that is not available otherwise
; Note that the model M2 is more compelling than needed for the causality principles because it 
universally maps the antecedent P3 to a single conclusion C2. However, the M2 does not 
presume a specific relation between LT and KT+1.

C2 =
;Follows from P3,M2

P4 =
;Observe functionality kt+1.

P5 4 3
; Presume this non-causality assumption P5.
; P5 satisfies the first causality principle, i.e. P4 cannot cause P3 since an effect does not precede 
its cause in time

P6 ( 4 2) ( = )
;Presume that prediction errors are independent of M2’s domain, i.e. all information from KT
about KT+1 has been captured in M2’s model parameters.

M3 ( = ), 2, 5, 6 4|( = )
;Presume this definition of the probabilities in Equation 41. P5 just strengthens a belief in a 
causal interpretation of this probability.

C3 4|( = )
;Concludes that any information set V={P3,P4} of equal {lt} has been conceived as a replication. 
To confirm the prima facie causality in Equation 41, C3 differs at various values lt.

Valid argument: Yes, but C2,C3,P5,P6 are not immediately observable
Functional relation: Yes, but M2,M3 maps to conclusions C2,C3 that are not immediately 

observable.
Common sense evidence: -
Universal argument: No, the stratified sample (l,k)[1,t] does not suffice to observe the probability 

C3 and the reliability engineering argument only addressed the three 
causality principles for KT KT+1 in M2,P5.

Decidable argument: No, both the model M2 and the presumption P6 are controversial.

Figure 14 Reliability engineering argument

Presumption P6 in the reliability engineering argument alternatively denotes as:( 4 = 2 + 6 = 2( = ) + 6) ( = ( ) + )        ; = , , 43

Equation 43 shows that the distribution of functionality P4:KT+1=kt+1 is the sum of the 
model M2:f(kt) and the error distribution P6: t+1 that are universal provided that LT=lt.
The probability C3 that follows from the distribution of functionality P4:KT+1=kt+1 in 
Equation 43 then requires in-depth knowledge about the model M2 and the error 
distribution P6. If we were to have this in-depth knowledge, the causality between 
maintenance policy compliance LT and functionality KT+1 would have followed from a 
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universal equation 43 and maintenance would have been justifiable. So, it is the 
controversy about the model M2 and the presumption P6 that is problematic for the 
justifiability of maintenance. However, we suspect to only know some stratified sample 
(l,k)[1,t]. Then, the reliability engineering argument may existentially claim the 
likelihood of some arbitrarily presumed model M2 and some arbitrarily presumed error 
distribution P6. These existential claims are vulnerable to extensions of the sample 
(l,k)[1,t] and for more likely presumptions about the model M2 and the error distribution 
P6.

Equation 43 holds for a single value l and all t,k reconciling with the definition of 
reliability in Section 3.5 that similarly referred to “given conditions” like a constant 
maintenance policy compliance LT=lt. The universal model M2:f(kt) may or may not 
depend on maintenance policy compliance LT=lt.

The universal model M2:f(kt) in the reliability engineering argument is simpler than the 
equivalent universal model M2:f(lt,kt) in the maintenance prognostic argument. 
Eventually, the model M2:f(kt) is less controversial than the model M2:f(lt,kt).
Otherwise, the reliability engineering argument remains equally undecidable due to the 
controversy about the universal model M2:f(kt) and about the universal error 
distribution P6: t+1 while delimiting the applicability of its claim to a constant 
maintenance policy compliance LT=lt. We suspect that the latter will be true.

4.3.2 Claim about prima facie causality

This section will explain what the reliability engineering argument claims about the 
prima facie causality in Equation 41. The reliability engineering argument claims a 
causality KT KT+1 because its model M2 and its presumption P5 cover all three 
causality principles (Section 2.3.3). So, conventional reliability engineering is geared to 
predict the item’s life from its age under given conditions. The reliability engineering 
argument from Figure 14 could similarly be seen as some hazard rate model that 
predicts the item’s one-step-ahead functionality KT+1 from its current functionality KT
under a given maintenance policy compliance LT=lt. Therefore, the reliability 
engineering argument does not claim a specific relation between LT and KT+1 and 
consequently neither about the prima facie causality in Equation 41.

Tentatively, we have in-depth knowledge about the universal model M2 at a given LT=lt
and LT=lt’. If these models M2 differ, we would conclude that maintenance policy 
compliance LT causes functionality KT+1. Even if we only knew the universal model M2 
given a single LT=lt, we could still assess the likelihood of the assumption that this 
model M2 also generated the observations at some alternative LT=lt’. In this way, the 
reliability engineering argument may still claim that LT and KT+1 are related but not how
LT and KT+1 are related. 

We suspect a lack of in-depth knowledge that could settle the controversy about even a 
single universal model M2. We therefore expect that the reliability engineering 
argument will not be compelling for the causality between LT and KT+1.
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Eventually, the reliability engineering argument could only existentially claim the 
likelihood of some presumed model M2 and some presumed error distribution P6 at a 
given LT=lt. However, we can only assess this likelihood of a limited subset of 
candidate models M2 and error distributions P6 from a potentially infinite set of 
available options. Therefore, the reliability engineering argument is expected to be 
imprecise about the prima facie causality in Equation 41.

The path graph of the reliability engineering argument in Figure 11 specifies the non-
causality assumptions that we need to interpret an existential confirmation of the prima 
facie causality in Equation 41 as being causal. These non-causality assumptions do not 
just follow from inferred statistical associations and the path graphs in Figure 11 are 
therefore not entirely testable (Pearl, 2010), (Spirtes, Glymour, & Scheines, 2000). The 
independence (=bidirectional non-causality assumption in Figure 11) between KT and B
is untestable as the background variable B remains unobserved, and it is only in-depth 
knowledge about the first causality principle (Section 2.3.3), which asserts that the 
future cannot cause the past, that made us omit the arrows to the left in KT KT+1 and 
LT KT+1. However, the independence between LT and KT is straightforwardly testable 
from a sample (l,k)[1,t] which potentially allows us to be more precise about the causal 
interpretation of an existentially confirmed prima facie causality in Equation 41 by the 
reliability engineering argument.

4.3.3 Sampling issues

In the absence of in-depth knowledge about the model M2 and the error distribution P6, 
the stratified sample (l,k)[1,t] does not suffice to validate the reliability engineering 
argument. Random assignment of treatments would have mitigated controversy about 
the treatment being the cause of some statistical association. In that case, the following 
presumptions might have become tenable:

- A significant difference in the observed functionality P4:KT+1=kt+1 for the 
treatment group and the control group uniquely relies on the treatment;

- the error distribution P6 for the treatment and the control group is identical.
These presumptions would have enabled likelihood assessments of some presumed 
universal model M2. However, we have ignored costly experimental research to 
validate a maintenance policy despite these potential merits. As a result, the reliability 
engineering argument is expected to remain undecidable about the causality LT KT+1.

In Section 2.3.3, we introduced a more modest prima facie causality that only holds 
with respect to an information set V. Since it would be odd to conceive identical 
information sets V as distinguishable replications, we propose conceiving a replication 
which would then be a subset of V. In the case of the prima facie causality in Equation 
41, the information set V comprises the following elements:

- The element {kt+1} in V, claimed by the proposition P4, has been conceived as a 
trial from the probability function M3 in the reliability engineering argument;

- The element {kt} in V, claimed by the proposition P3, is independent of the 
prediction errors P6 in the reliability engineering argument;

- The element {lt} in V, claimed by the proposition P3, may relate to the 
proposition P4 in any way.
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From the above, it follows that any information set V with identical {lt} could be seen 
as a replication from the probability function M3 in the reliability engineering 
argument. The observed frequency of the replications V={lt,kt,kt+1} with identical {lt} in 
the sample (l,k)[1,t] may tentatively not even exceed one. The sampling efficiency to 
obtain a sufficient number of replications could appear to be low because the evidence 
(l,k)[1,t] could eventually be scattered over an infinite number of possible replications.

Still, the reliability engineering argument may existentially claim the likelihood of some 
presumed model M2 and some presumed error distribution P6. To existentially refute
the prima facie causality in Equation 41, the sample (l,k)[1,t] should comprise sufficient 
replications of every possible value lt. Since a finite sample (l,k)[1,t] cannot cover an 
infinite sample space, maintenance policy compliance must have a less precise 
categorical scale. To existentially confirm the prima facie causality in Equation 41, the 
sample (l,k)[1,t] should comprise sufficient replications of at least two different values lt.
It is possible that the stratified sample (l,k)[1,t] fails to comply with this additional 
constraint on its composition. In that case, the maintenance policy validation by the 
reliability engineering argument would fail.

In conclusion, the reliability engineering argument is less efficient in its sampling 
because it typically discards many infrequently observed replications from the sample 
(l,k)[1,t]. Because of the constraints on an observational research, where control over the 
composition of the sample (l,k)[1,t] is impossible, this concern is realistic. Reliability 
engineering is known to often suffer efficiency problems (Abernethy, 2006), which 
implies that the number of replications may not suffice in a typical sample (l,k)[1,t].

4.4 Nonparametric argument

This section will introduce the maintenance prognostic argument by (i) presenting its 
propositions in Section 4.4.1, by (ii) discussing its claim regarding the prima facie 
causality in Equation 41 in Section 4.4.2 and by (iii) discussing its sampling efficiency 
in Section 4.4.3. The nonparametric argument instantiates an exact conditional approach 
that compares two independent binomial proportions (Lin & Yang, 2009).

4.4.1 Claim of the argument

This section will explain what the nonparametric argument claims about the relation 
between its antecedents and its conclusion.

The nonparametric argument in Figure 15 comprises presumptions P5,P7,M4. The 
presumption P5 and the model M4 do not appear to be controversial. The presumption 
P5 just reflects common sense about the causality principle that an effect P4 does not 
precede its cause P3 in time and the model M4 appears to be a common sense 
operationalisation of a probability. Therefore, the nonparametric argument appears to be 
decidable because only the presumption P7 appears to be controversial. However, the 
conclusion C4 is a not immediately observable probability of P4, given the 
presumptions P5 and P7 and a constant kt.
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P3 ( = , = )
;Observe functionality kt and maintenance policy compliance lt.

P4 =
;Observe functionality kt+1.

P5 4 3
; Presume this non-causality assumption P5.
; P5 satisfies the first causality principle, i.e. P4 cannot cause P3 since an effect does not precede 
its cause in time

P7 ( = ) 4
; Presume this non-causality assumption P7.
; P7,P5 imply universal independence between (LT=lt) and P4
;If P7 holds at some time, second causality principle has been refuted, i.e. a cause does not 
remain constant in direction throughout time.
;If P7 holds for some kt, third causality principle has been refuted, i.e. a cause does not comprise 
unique information about the effect that is not available otherwise.

M4 ( 5, 7) 4|( = )
;Presume this definition of the probability of P4, given P5,P7. This probability does not depend 
on maintenance policy compliance LT.

C4 4|( = )
; Concludes that any information set V={P3,P4} of equal kt has been conceived as a replication. 
To confirm the prima facie causality in Equation 41, P7 is false at all possible values kt.

Valid argument: Yes, but C4,P5,P7 are not immediately observable
Functional relation: Yes, but M4 maps to a conclusion C4 that is not immediately observable
Common sense evidence: -
Universal argument: No, but the nonparametric argument does assess the probability that the 

sample (l,k)[1,t] comes from a data generating process that satisfies P5,P7. 
Decidable argument: Yes, only the presumption P7 is controversial.

Figure 15 Nonparametric argument

The presumptions P5 and P7 claim a universal independence between maintenance 
policy compliance LT and functionality KT+1 at a given KT. This independence 
assumption omits the model uncertainty and the parameter uncertainty of the 
maintenance prognostic argument and the reliability engineering argument. If this 
independence assumption were universally true, maintenance policy compliance LT
would not have caused functionality KT+1 and maintenance would have been unjustified. 
So, it is the controversy about this independence presumption that makes maintenance 
unjustifiable. The nonparametric argument does not conclusively decide about the truth 
or falsehood of the controversial presumption P7. The nonparametric argument just 
deems presumption P7 more or less likely.

4.4.2 Claim about prima facie causality

This section will explain what the nonparametric argument claims about the prima facie 
causality in Equation 41.
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In the tentative case that we would have had in-depth knowledge about presumption P7, 
we would straightforwardly decide about the prima facie causality in Equation 41
without the need for any argument. Since we suspect that this in-depth knowledge is 
lacking, the nonparametric argument may infer the presumption P7 from propositions 
that we deem true. The nonparametric argument only existentially claims the likelihood 
of presumption P7 at a given KT:

| , ( | , ) = | ( | ) |( , )[ , ] <  ;( ) 44

Equation 44 shows that the prima facie causality in Equation 41 may also follow from a 
low likelihood, i.e. < , of a presumed independence at some l and all t,k.

Let independence be likely at all or only some values of functionality KT in 
Equation 44. Then, maintenance policy compliance LT would not uniquely attribute to 
functionality KT+1 irrespective of KT which would cause a problem for the third 
causality principle (Section 2.3.3), which requires that a cause comprises unique
information about the effect that is not available otherwise. Consequently, we would 
deem the prima facie causality in Equation 41 as unlikely.

Alternatively, let independence be unlikely < at all values of functionality KT in 
Equation 44. Then, we would existentially claim that presumption P7 is unlikely 
irrespective of KT. Consequently, we would deem the prima facie causality in Equation 
41 as likely. A straightforward assessment of the observed proportions or means of 
functionality KT+1 could be informative about the strength or the direction of the prima 
facie causality in Equation 41. So, the nonparametric argument lacks the predictive 
capabilities of some model M2 that are needed to support prospective decision making,
but it may serve the maintenance policy validation in retrospect.

The path graph of the nonparametric argument in Figure 11 specifies the non-causality 
assumptions that we need to interpret an existential confirmation of the prima facie 
causality in Equation 41 as being causal. These non-causality assumptions do not just 
follow from inferred statistical associations and the path graphs in Figure 11 are 
therefore not entirely testable (Pearl, 2010), (Spirtes, Glymour, & Scheines, 2000). The 
independence (=bidirectional non-causality assumption in Figure 11) between LT and B
is untestable as the background variable B remains unobserved and it is simply in-depth 
knowledge about the first causality principle (Section 2.3.3), which asserts that the 
future cannot cause the past that made us omit the arrows to the left in KT KT+1 and
LT KT+1. Then, the independence between LT and KT+1 directly follows from the 
proposition P7 of the nonparametric argument. Tentatively, an inferred independence 
within an information set V may appear to be spurious similar to Figure 8. Then, “true” 
dependencies like LT KT+1 and LT B KT+1 should rule each other out which is quite 
a strong presumption (faithfulness condition (Spirtes, Glymour, & Scheines, 2000)). In 
this respect, the nonparametric argument is more compelling for a causal interpretation 
of an existentially inferred claim regarding the prima facie causality in Equation 41 than 
any of the other candidate arguments.
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4.4.3 Sampling issues

In the absence of in-depth knowledge about the presumption P7, the stratified sample 
(l,k)[1,t] does not suffice to validate the nonparametric argument. Random assignment of 
treatments would have mitigated controversy about the treatment being the cause of 
some statistical association. This would have enabled likelihood assessments of some 
universal presumption P7. However, we have ignored costly experimental research to 
validate a maintenance policy despite these potential merits. As a result, the 
nonparametric argument is expected to remain undecidable about the causality 
LT KT+1.

In Section 2.3.3, we introduced that a more modest prima facie causality only holds 
with respect to an information set V. Since it would be odd to conceive identical 
information sets V as distinguishable replications, we propose conceiving a replication 
which would then be a subset of V. In the case of the prima facie causality in Equation 
41, the information set V comprises the following elements:

- The element {kt+1} in V, claimed by the proposition P4, has been conceived as a 
trial from the probability function M4 in the nonparametric argument;

- The element {lt} in V, claimed by the proposition P3, is independent of the 
proposition P4 in the nonparametric argument;

- The element {kt} in V, claimed by the proposition P3, may relate to the 
proposition P4 in any way.

From the above, it follows that any information set V with identical {kt} could be seen 
as a replication from the probability function M4 in the nonparametric argument. The
observed frequency of the replications V={lt,kt,kt+1} with identical {kt} in the sample 
(l,k)[1,t] may tentatively not even exceed one. The sampling efficiency to obtain a 
sufficient number of replications could appear to be low because the evidence (l,k)[1,t]
could eventually be scattered over an infinite number of possible replications.

To existentially refute the prima facie causality in Equation 41, the sample (l,k)[1,t]
should comprise sufficient replications of:

- various lt, to assess the likelihood of independence between LT and KT+1 at
- a constant kt, to avoid a presumption regarding the relation between KT and KT+1

and to prevent KT from being a mediator or a confounder of an eventual 
dependence between LT and KT+1.

We typically do not a priori know which values kt yield the larger likelihoods. We
possibly need to repeat this validation of the nonparametric argument at different values 
kt’ until we find one that existentially claims the independence between LT and KT+1.

To existentially confirm the prima facie causality in Equation 41, the sample (l,k)[1,t]
should comprise sufficient replications of:

- various lt, to assess the likelihood of independence between LT and KT+1 at
- a constant kt, to avoid a presumption regarding the relation between KT and KT+1

and to prevent KT from being a mediator or a confounder of an eventual 
dependence between LT and KT+1 and

- at every possible kt to ensure the third causality principle (Section 2.3.3), which
asserts that a cause comprises unique information about the effect that is not 
available otherwise.
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Since a finite sample (l,k)[1,t] cannot cover an infinite sample space, functionality KT
must have a less precise categorical scale to existentially confirm the prima facie 
causality in Equation 41. Eventually, the stratified sample (l,k)[1,t] fails to comply with 
these additional constraints on its composition. In that case, the maintenance policy 
validation by the nonparametric argument would fail.

In conclusion, the nonparametric argument is least efficient in its sampling because it 
typically discards many infrequently observed replications from the sample (l,k)[1,t].
Because of the constraints on an observational research, where control over the 
composition of the sample (l,k)[1,t] is impossible, this concern is realistic.

4.5 Review of the arguments on inference precision

This section will preliminarily assess the inference precision of a maintenance policy 
validation by the candidate arguments.

Maintenance 
optimisation 
argument
(Section 4.1)

Maintenance 
prognostic 
argument
(Section 4.2)

Reliability 
engineering 
argument
(Section 4.3)

Nonparametric 
argument 
(Section 4.4)

Valid argument Yes Yes Yes Yes

Functional 
relation

Yes Yes Yes Yes

Common sense 
evidence

- - - -

Universal 
argument

Yes, if refuted No No No

Decidable 
argument

Yes No No Only in 
likelihood

Decidable about 
LT KT+1 w.r.t 
{lt,kt,kt+1}

No, if refuted No No Only in 
likelihood

Table 5 Preliminary inference precision of the candidate arguments

We will only discuss the inference objectives from Section 1.4.1 that are affected by the 
choice of the argument:

- Valid argument;
- Functional relation;
- Universal argument;
- Decidable argument.

Without a realistic sample (l,k)[1,t], the remarks regarding inference precision are only 
preliminary. 

Table 5 reveals that the arguments are all valid and they all comprise functional models. 
Therefore, these inference objectives are not selective for the candidate arguments. The 
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maintenance optimisation argument is straightforwardly testable. A preference for the 
other candidate arguments appears to be driven by:

- The amount of in-depth knowledge about the model M2 and the error
distribution P6;

- The efficiency to collect a sample (l,k)[1,t] that meets the requirements.
Possibly, both in-depth knowledge and the sampling efficiency may turn out to be
insufficient. We would then decide that maintenance is unjustifiable by any of these 
arguments.

4.5.1 Findings regarding the “valid argument” inference objective

This inference objective assesses whether a conclusion deductively follows from the 
other propositions of the argument. The candidate arguments comprise explicit models 
that imply the conclusion of these arguments. We ignore arguments that leave the 
choice of a model to some random generator, like artificial neural networks or genetic 
algorithms. Nor have we widened the field to include mixed model arguments here. 

4.5.2 Findings regarding the “functional relation” inference objective

This inference objective assesses whether the antecedents map to a unique conclusion. 

The model M1 of the maintenance optimisation argument is an equivalence relation that 
inherits all properties of the functional relation kt=f(lt). Both the antecedent and the 
consequent immediately follow from common sense about the observable evidence 
P1,C1.

The model M2 of the maintenance prognostic argument and the reliability engineering 
argument is a functional relation, but its conclusion is a not immediately observable 
estimate of a one-step-ahead functionality.

The model M3 of the maintenance prognostic argument and the reliability engineering 
argument is a functional relation that appears to be a common sense operationalisation
of a probability function. However, probabilities are not immediately observable and 
they may only be estimated when in-depth knowledge about the model M2 and about 
the error distribution P6 is available. This in-depth knowledge is beyond the information 
set V.

The model M4 of the nonparametric argument is a functional relation that appears to be 
a common sense operationalisation of a probability function. A probability is a not 
immediately observable quantity.

So, all models in the candidate arguments are functional relations that map their domain
to a unique conclusion. However, only model M1 appears to be straightforwardly 
decidable by some sample (l,k)[1,t] whereas all the other arguments comprise not 
immediately observable propositions that may turn out to be difficult to estimate.
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4.5.3 Findings regarding the “universal argument” inference objective

This inference objective assesses whether the argument holds universally, i.e. holds for 
the entire population. 

The maintenance optimisation argument defines an equivalence between maintenance 
policy compliance L and functionality K. A single counterexample in a stratified sample 
(l,k)[1,t] would already suffice to universally refute this equivalence.

The other arguments cannot make universal claims from a stratified sample (l,k)[1,t].
Given the constraint on the prima facie causality in Equation 41 that delimits knowledge 
to the information set V={lt,kt,kt+1}, the stratified sample (l,k)[1,t] may still comprise
enough replications to test the likelihood of some presumption regarding this prima 
facie causality. For such an existential claim, the maintenance prognostic argument and 
the reliability engineering argument still require an arbitrary set of candidate models 
M2 and error distributions P6. We may not be able to resolve this model uncertainty and 
parameter uncertainty that seem inapplicable to the nonparametric argument. The 
nonparametric argument presumes independence between LT and KT+1 which omits the 
burden of model selection. So, the nonparametric argument directly infers an existential
claim regarding this independence that maps to a prima facie causality by Equation 44.

So, we suspect that only the maintenance optimisation argument will be refuted 
universally. The nonparametric argument omits model uncertainty and parameter 
uncertainty about its existential claim regarding independence. For the maintenance 
prognostic argument and the reliability engineering argument, we suspect that model 
uncertainty and parameter uncertainty hamper an existential claim regarding a specific 
dependence.

4.5.4 Findings regarding the “decidable argument” inference objective

This inference objective assesses whether the truth or falsehood of presumptions is 
identifiable.

The maintenance optimisation argument only presumes a controversial model M1,
whereas P1 and C1 follow from common sense observable evidence. Some stratified 
sample (l,k)[1,t] could therefore universally refute or existentially confirm the 
maintenance optimisation argument. The maintenance optimisation argument is 
therefore decidable.

The maintenance prognostic argument comprises two controversial propositions that 
make the argument undecidable. In-depth knowledge about some “man-machine-law” 
may settle the controversy about the model M2. Alternatively, random assignment of 
treatments might have weakened a presumed equality of the error distributions P6. 
Neither in-depth knowledge, nor random assignment of treatments seem applicable to 
this maintenance policy validation. The maintenance prognostic argument will then 
remain undecidable.
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The reliability engineering argument resembles the maintenance prognostic argument in 
this respect since it only excludes maintenance policy compliance LT from the domain
of model M2. Therefore the reliability engineering argument is expected to be 
undecidable.

The nonparametric argument only comprises a single controversial proposition which 
makes the argument decidable in principle. However, the nonparametric argument only 
concludes with a not immediately observable probability.

So, we expect that only the maintenance optimisation argument will be decidable,
whereas the nonparametric argument will only be decidable in terms of likelihood. The 
maintenance prognostic argument and the reliability engineering argument are expected 
to remain undecidable.

4.5.5 Findings regarding the choice of a sampling procedure

In this section, we will only survey the additional constraints that a candidate argument 
imposes on the composition of a sample (l,k)[1,t] that has been collected by observational 
research. Since we have no control over the composition of the sample, these additional 
constraints potentially obstruct the maintenance policy validation by a particular 
argument.

Any sample (l,k)[1,t] may universally refute or existentially confirm the model M1 of the 
maintenance optimisation argument. Any information set {lt,kt} from (l,k)[1,t] could be 
seen as a replication. So, the maintenance optimisation argument does not discard any 
component in the sample (l,k)[1,t]. The sampling for the maintenance optimisation 
argument is therefore expected to be efficient.

The maintenance prognostic argument takes any information set V={lt,kt,kt+1} as a 
replication. So, the maintenance prognostic argument does not discard any information 
set V from the sample (l,k)[1,t]. Therefore, the sampling for the maintenance prognostic 
argument is expected to be efficient.

The reliability engineering argument takes any information set V={lt,kt,kt+1} with 
identical {lt} as a replication. Eventually, the observed frequency of these replications in 
the sample (l,k)[1,t] does not suffice for a maintenance policy validation by the reliability 
engineering argument. This means that replications in a sample (l,k)[1,t] may be 
discarded because their observed frequency in the sample (l,k)[1,t] is too low for a 
significant claim. The sampling for the reliability engineering argument is therefore less 
efficient.

To existentially confirm the prima facie causality in Equation 41 by the reliability 
engineering argument, the sample (l,k)[1,t] should comprise sufficient replications of at 
least two well-chosen values of maintenance policy compliance LT. To existentially 
refute the prima facie causality in Equation 41 by the reliability engineering argument, 
the sample (l,k)[1,t] should comprise sufficient replications of every element in the 
sample space of maintenance policy compliance LT. The latter is only possible if this
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sample space is finite. The sampling for the reliability engineering argument therefore 
lacks efficiency if maintenance policy compliance has a cardinal scale.

The nonparametric argument takes any information set V={lt,kt,kt+1} with identical {kt}
as a replication. Eventually, the observed frequency of these replications in the sample 
(l,k)[1,t] does not suffice for a maintenance policy validation by the nonparametric 
argument. This means that replications in a sample (l,k)[1,t] may be discarded because 
their observed frequency in the sample (l,k)[1,t] is too low for a significant claim. In 
addition, replications where {lt} does not vary enough may be discarded due to their 
inability to test for independence between LT and KT+1. The sampling for the 
nonparametric argument is therefore least efficient.

To existentially refute the prima facie causality in Equation 41 by the nonparametric 
argument, the sample (l,k)[1,t] should comprise sufficient replications of varying {lt} at 
some well-chosen {kt}. To existentially confirm the prima facie causality in Equation 
41 by the nonparametric argument, the sample (l,k)[1,t] should comprise sufficient 
replications of varying {lt} at every possible {kt}. The latter is only possible if the 
sample space of functionality KT is finite. The sampling for the nonparametric argument 
therefore lacks efficiency if functionality has a cardinal scale.

To establish common sense about a replication in the sample (l,k)[1,t], we only used the 
information set V={lt,kt,kt+1} that we already used for the prima facie causality in 
Equation 41. So, this definition of a replication is not an additional encumbrance to the 
presumption regarding the prima facie causality in Equation 41. Still, one may argue
that the sample (l,k)[1,t] comprises more information than the information set 
V={lt,kt,kt+1}={P3,P4} of the prima facie causality in Equation 41. Eventually, a strong 
time-dependent evolution of L and K is problematic as regards the presumption that 
every information set V={lt,kt,kt+1} in the sample (l,k)[1,t] could be seen as a replication. 
In Section 5.5.3, we will apply a split sample test to get a glimpse into this time-
dependent behaviour in a realistic case study. Note that independence between LT and 
KT+1 at some time already suffices to refute the prima facie causality in Equation 41 due 
to the second causality principle (Section 2.3.3), i.e. a cause remains constant in 
direction throughout time. However, time is just one of the many candidate background 
variables that may reduce an inferred prima facie causality to a spurious cause as shown 
in Figure 8. So, a claim about the prima facie causality in Equation 41 does not entirely 
suffice for the maintenance policy validation.

So, we expect that the maintenance optimisation argument and the maintenance 
prognostic argument will admit all information sets V={lt,kt,kt+1} from the sample 
(l,k)[1,t]. The reliability engineering argument and the nonparametric argument impose 
constraints on the composition of the sample (l,k)[1,t] that may appear to be problematic 
in practice.

4.5.6 Findings regarding the claim about prima facie causality

This section will preliminarily revisit what the candidate arguments claim about the 
prima facie causality in Equation 41.
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If the maintenance optimisation argument appears to be sound, it refutes the prima facie 
causality in Equation 41 because it presumes that LT and KT are redundant variables. If 
unsound, the maintenance optimisation argument cannot claim much about the prima 
facie causality in Equation 41. We suspect that the latter is true.

A stratified sample (l,k)[1,t] does not decide about the soundness of the other arguments. 
Therefore, universal claims about causality are similarly problematic but we may resort 
to an existential claim about prima facie causality.

The maintenance prognostic argument takes all three causality principles (Section 2.3.3)
in its propositions, which potentially enables even a claim regarding a causality 
LT KT+1 if it were universally sound. Still, we suspect there is a lack of in-depth 
knowledge about an arbitrary set of candidate models M2 and about an arbitrary set of 
error distributions P6 to make the maintenance prognostic argument decidable. 
Therefore, the maintenance prognostic argument may only existentially claim the 
likelihood of an arbitrarily presumed model M2 and an arbitrarily presumed error 
distribution P6 that define the prima facie causality in Equation 41 by their parameters. 
Still, this existential claim is expected to remain subject to model uncertainty and 
parameter uncertainty.

The reliability engineering argument only differs from the maintenance prognostic 
argument by reducing the domain of the model M2 to KT=kt. Therefore, all concerns 
regarding the selection of the model M2 and the selection of the error distribution P6 in 
the maintenance prognostic argument equally apply. Furthermore, the reliability 
engineering argument imposes an additional constraint on the composition of a sample
(l,k)[1,t] which potentially requires us to discard rarely observed replications. We 
therefore suspect that the reliability engineering argument is even less precise about the 
prima facie causality in Equation 41 than the maintenance prognostic argument.

The nonparametric argument may existentially claim the likelihood of the prima facie 
causality in Equation 41. However, the nonparametric argument imposes severe 
constraints on the composition of a sample (l,k)[1,t] which potentially requires us to 
discard rarely observed replications and frequently observed replications where {lt}
does not vary enough. It is possible that we will fail to efficiently collect an adequate 
sample for the nonparametric argument.

In conclusion, in the absence of a realistic sample, the nonparametric argument seems to 
be most precise about the maintenance policy validation because it is the only candidate 
argument that decides about the likelihood of the prima facie causality in Equation 41 as 
shown in Table 5.
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5 Implementation of the inference

This chapter will present the maintenance policy validation in a realistic case study.

In Section 5.1, we will assess to what extent the case organisation’s common sense 
about maintenance policy compliance and functionality satisfies the construction rules 
for maintenance performance indicators in Section 3.2. We will suggest some 
improvements and we will reveal some concerns regarding a lack of common sense.

In Section 5.2, we will compose three candidate samples that could instantiate the case 
organisation’s common sense about maintenance policy compliance and functionality. 
We will specifically evaluate whether these samples comply with the additional 
sampling constraints from the reliability argument and the nonparametric argument that 
we introduced in Section 4.3 and Section 4.4 respectively.

In Section 5.3, we will try to validate the candidate arguments from Chapter 4 by the 
candidate samples from Section 5.2. Eventually, the evidence also comprises in-depth 
knowledge about the argument’s presumptions. For this specific case study, we will 
assess the sufficiency of the evidence to decide about the soundness of the candidate
arguments and about the prima facie causality LT KT+1 with respect to an information 
set V={lt,kt,kt+1}. This will reveal differences in inference precision.

In Section 5.4, we will expand on the maintenance policy validation by the preferred 
argument and the preferred sample in this case study. We will extend the information 
set V to seek for long-term effects of maintenance policy compliance. We will also 
reduce the information set V to better compare the candidate samples.

In Section 5.5, we will discuss the influence of background variables that might have 
biased the maintenance policy validation in this specific case study. We may possibly 
find a certain degree of controversy about the evidence and we will also apply a split 
sample test that may reveal a lack of stationarity.

5.1 Choice of an operationalisation

This section will concentrate on the operationalisation of maintenance policy 
compliance L and functionality K in a realistic case study. In the previous chapters, we 
already introduced some potential obstructions for a common sense operationalisation:

- Assessments of causality are problematic, particularly in an observational 
research, as the influence of background variables cannot be managed 
statistically (Section 2.3);

- Decision making is encumbered with subjectivity (Section 3.1);
- Conventional maintenance performance indicators do not really accommodate 

validations of causal claims (Section 3.2).
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The case organisation uses a maintenance scorecard based on Haarman and Delahay 
(2004). This maintenance scorecard defines common sense about the objectives of a 
maintenance policy in terms of (i) asset utilisation, (ii) cost control, (iii) resource 
allocation and (iv) health, safety and environment. 
A maintenance policy that achieves these objectives (i.e. zero incidents, no costs, 100% 
asset utilisation) seems inaccessible. The case organisation therefore resorts to some 
attainable requirements (goals or aspiration levels). These requirements seem to be 
assessed iteratively by experience rather than by explicit indifference curves (Pareto, 
transl. 1971). By reconciling with the case organisation’s requirements on its 
performance indicators, we hope to mitigate the concerns regarding subjectivity as 
discussed in Section 3.1. In Section 5.1.1 and 5.1.2, we will therefore seek for common 
sense about the performance indicators for functionality K and maintenance policy 
compliance L respectively.

5.1.1 Common sense about functionality

This section will attempt to reveal the case organisation’s common sense about 
functionality. We will identify some improvement opportunities.

The case organisation uses a single performance indicator for the “asset utilisation” 
objective. We label this performance indicator for functionality by “monthly 
availability” Y . Although availability is typically a probability that expresses a degree 
of belief in a yet to be observed upstate, in this case study the “monthly availability” is 
some retrospectively observed proportion of uptime over total time. Figure 16 depicts 
the monthly availability and the daily output (e.g. the produced amount) on which it is 
built. Evidently, monthly availability does not adequately capture the variation in the 
daily output signal, as it has a much lower sampling rate.

Figure 16 Functionality captured at a daily and a monthly sampling rate

Functionality does not just follow from some physical variable, it is also encumbered 
with a subjective requirement. This requirement typically specifies a threshold value for 
this physical variable that distinguishes an upstate from a downstate.

In this case study, the objective for the “asset utilisation” was to constantly maximise 
output rather than to satisfy a varying demand. Then, an assumption that inherent output 
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becomes observable does not appear to be problematic. The case organisation adopted 
the reliability engineering convention of a dichotomous state variable YT as shown in:

= 1       > 16  ( )     0       16 ( ) 45

The value of YT then states whether a required functionality has been fulfilled or not. 
The distribution of daily output in Figure 17 shows that daily output seems to take either 
a high (above 16) or a low (around 0) value. The dichotomous variable YT in Equation 
45 therefore seems an acceptable representation of functionality that ignores subtle 
output fluctuations.

Figure 17 Cumulative distribution of daily output

The case organisation’s performance indicator for functionality averages all 
functionality YT to some monthly availability Y by:

= 1 ×        ; = "      46

Equation 46 levels out many of the potentially informative fluctuations in output since 
similar values of monthly availability Y may come from very different output 
trajectories. The longitudinal redundancy concern that was discussed in Section 3.2.1 is 
inapplicable to this case study because the monthly availability Y keeps pace with a 
monthly sampling rate.

The maintenance scorecard in Table 4, comprised various performance indicators for 
functionality like availability, MTBF, breakdown frequency or number of failures. 
These all seem to be deductions from the dichotomous time series y[1,t]. However, these
deductions are irreversible. Apparently, a conversion from a time series y[1,t] to the
performance indicators for functionality in Table 4 implies a loss of information. 
Moreover, this conversion would introduce redundancies that do not exist in the time 
series y[1,t].

The case organisation’s maintenance scorecard also includes lagging indicators for the 
objectives of “cost control”, “resource allocation” and “health, safety and environment”. 
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We will not assess whether the adopted scorecard (Haarman & Delahay, 2004) is 
complete in reflecting the genuine organisational objectives, nor whether these lagging 
indicators are complete and non-redundant representations of these objectives. To serve 
efficiency, we just consider functionality. So, we direct our first attempt to validate a
maintenance policy by a simple bivariate sample (l,k)[1,t]. Like in any model selection 
problem (Burnham & Anderson, 2010), such a simple argument is an arbitrary choice to 
balance the completeness of an information set V with the efficiency of collecting 
sufficient evidence as discussed in Section 3.2.3. As functionality is just one of the 
maintenance performance indicators that are subject to trade-offs, it may occur that 
some maintenance policy violations even enhance functionality but at the same time 
deteriorate the unobserved total utility (i.e. the weighted combination of all indicators). 
This does not mean that a maintenance policy validation can no longer be put into 
practical use. In Section 3.3.2, we explained that maintenance policy assessments 
typically follow some satisficing process that yields a sub-optimal maintenance policy 
in which violations may turn out to enhance utility. Still, the maintenance policy 
validation may provide this essential empirical feedback regarding the effect of the 
currently applied maintenance policy.

The case organisation’s convention to operationalise functionality by the monthly 
availability Y may improve by (i) implementing an alternative to better capture the 
potentially informative fluctuations in daily output; (ii) adopting the times series y[1,t] as 
the single indicator to remove existing redundancy in the functionality indicators on the 
maintenance scorecard in Table 4.

5.1.2 Common sense about maintenance policy compliance

This section will attempt to reveal the case organisation’s common sense about the 
quantification of maintenance policy compliance on its maintenance scorecard. We will 
identify some improvement opportunities.

The case organisation uses three leading indicators for the “resource allocation” 
objective:

- L1: monthly mean proportion of timely completed maintenance actions;
- L2: queue of delayed maintenance actions;
- L3: backlog of uncompleted maintenance actions (expressed in hours).

We ignored L3 because the case organisation has not defined a requirement (an 
acceptable amount of backlog) on this leading indicator. If the required value of L3

remains unspecified, we lack a criterion for maintenance policy compliance. Leading 
indicators L1 and L2 suffer from a definitional dependence as L2 is closely coupled to L1

by definition. This dependence leads to a redundancy concern as explained in Section
3.2.1. As opposed to L1, which is a monthly averaged value, L2 is instantaneously 
observable. We therefore propose to operationalise maintenance policy compliance by 
the queue of delays L2.

Figure 18 shows the case organisation’s convention to recording L2 at a monthly 
sampling rate. Figure 18 also depicts L2 at a daily sampling rate, which immediately 
reveals that a monthly sampling rate does not capture all potentially informative 
perturbations that are revealed at a daily sampling rate. 
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Besides the leading indicators L1 and L3 that we ignored, we may conceive many other 
possible policy violations. We do not, however, intervene in the case organisation’s 
course of operations by asking for evidence that is beyond the scope of the recording 
routines. As a result, the applicability of the maintenance policy validation in this case 
study is confined to an output effect resulting from delayed maintenance. Figure 18
shows that the signals of the delays contain some peaks that are promising because they 
may eventually detect causal responses. By confining ourselves to delayed maintenance
and output, we sacrifice completeness for efficiency as explained in Section 3.2.3.

Figure 18 Queue of delayed maintenance at a daily and a monthly sampling rate

Every decision to carry out maintenance is time bound. If we were allowed to defer 
maintenance actions till infinity, there would be no need for resources. Every decision 
can therefore be considered as being violated if a certain delay of the associated action 
occurs. Other maintenance policy violations only apply to a very specific subset of a 
maintenance policy. Alignment errors, for example, only apply to decisions to (re-
)align. The evidence for delays seems to be obtainable in an efficient way, since many 
organisations already record required and actual completion dates of maintenance 
actions. Finally, Figure 18 confirms that delays appear in abundance. The counterfactual 
reality seems therefore attainable.

This case study comprises a set of maintenance actions that were not completed at some 
time during a particular interval of 1977 days. To assess a queue of delayed 
maintenance at a particular time from that set, all maintenance actions should comprise:

- A birthdate (TB), i.e. the date on which the decision was taken;
- A required completion date (TR);
- The actual completion date (TC);
- A job description (to enable removing maintenance actions that are deferrable 

till infinity without affecting functionality).

To build a queue of delays on these maintenance actions, an indicator function XT,m
determines whether the mth maintenance action is a queue member (i.e. has been 
delayed) at a time T:
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Then, the queue length can be expressed as:

= , 48

Section 5.1.1 explained that functionality is just an incomplete operationalisation of the 
objectives of the maintenance policy, as we did not admit “cost control” and “health, 
safety and environment” indicators from the case organisation’s maintenance scorecard. 
We therefore propose to remove all maintenance actions that are deferrable till infinity 
without affecting the “asset utilisation” objective. This removal factor follows from 
expert judgement of the job description. To avoid a tautology, this removal factor 
should rely on a believed functionality risk and not on posterior knowledge about 
functionality.

For the case study, the survey below shows that the removal factors reduced the 
evidence by about one third:

- The sample comprised 6342 maintenance actions that were in a state of not 
having been completed at some time during an interval of 1977 days.

- Removing timely completed maintenance actions reduced this set to 2740 
delayed maintenance actions.

- Removing maintenance that is known to be deferrable till infinity without 
affecting functionality reduced this set further to 2209 delayed maintenance 
actions with a functionality risk.

Figure 19 shows the time series of the initial queue and the queues after applying these 
two removal factors.

Figure 19 Initial queue and reduced queues of delays

In hindsight, we could have skipped the removal of delayed maintenance without 
functionality risk because Figure 19 shows that the two queues of delays show a similar 
trend. Still, there is good reason to remove these maintenance actions. Delayed 
maintenance that is known to be not affecting functionality, can only spuriously 
correlate with functionality. Provided that common sense exists about the expert 
judgement regarding the functionality risk, this removal factor should be retained.
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Figure 19’s initial queue of uncompleted maintenance actions evolves differently than 
the two queues of delays. Although the queue of uncompleted maintenance actions may 
also relate to functionality, this relation is not compelling for the causal effect of 
maintenance policy compliance. Removing compliant maintenance provides the 
essential access to the counterfactual reality. Besides achieving a required completion 
date, we may similarly attempt other requirements imposed on a maintenance policy by 
common sense. So, the applicability of the maintenance policy validation is not 
necessarily confined to the delays that we took from the case organisation’s 
maintenance scorecard.

Common sense about the required completion date of maintenance appears to be 
problematic. This case organisation quantified a required completion date by a 
categorical variable. So, maintenance should be completed within either 1,7 or 30 days 
or deferred until a scheduled shutdown. A field expert claimed that these categories are 
imprecise in representing “genuine required completion dates”. However, we choose to 
follow the group policy as determined by the case organisation rather than some policy 
as determined by the field expert’s individual preferences. We realise that this 
controversy hampers inference precision.

The case organisation’s convention to operationalise maintenance policy compliance by 
the performance indicators L1, L2 and L3 may improve by (i) defining a requirement (an 
acceptable backlog) on performance indicator L3, (ii) eliminating the definitional 
dependence between L1 and L2 and (iii) abandoning monthly averages like L1 that are 
vulnerable to longitudinal redundancy as the sampling rate increases.

5.1.3 Findings regarding the “common sense evidence” objective

The case organisation uses a maintenance scorecard that includes leading and lagging 
performance indicators. The case organisation does not attempt to predict these 
maintenance performance indicators. Rather, it just qualitatively reviews their year-to-
date values.

The case organisation’s maintenance scorecard includes fewer redundancies (Section
3.2.1) than the maintenance scorecard from Table 4 but we found one in the leading 
performance indicators L1 and L2. Longitudinal redundancy appears to be absent, but an 
increased sampling rate would introduce it when the monthly means are not adjusted 
accordingly. 

The case organisation’s convention to measure maintenance performance does not 
foster causal inferences, specifically because the sampling rate is not conducive to 
reconstructing the original signals of maintenance policy compliance and functionality. 
Informative peaks in the candidate cause that should have an effect have been missed or 
levelled out. The case organisation’s sampling rate deserves reconsideration because it 
does not allow reconstruction of the original signal as required in Section 3.2.2.

The case organisation does not infer models from its maintenance performance 
indicators. So, these maintenance performance indicators merely reflect posterior 
satisfaction of goals. The completeness efficiency balance from Section 3.2.3 has 
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therefore never been a concern. By confining the maintenance policy validation to 
functionality, we are incomplete in the case organisation’s objectives since we exclude 
objectives regarding “cost control”, “resource allocation”, “health, safety and 
environment”. However, our attempt to validate some relationship between maintenance 
policy compliance and functionality alludes to the intention of maintenance by 
definition (CEN, 2001), (IEC, 1990). Moreover, completeness is unattainable as 
explained in Section 3.2.3.

The case organisation implicitly complies with a notion of satisficing by having defined 
subjective but attainable requirements on its maintenance performance indicators. The 
subjective requirement on functionality does not appear to be controversial within the 
case organisation. However, the subjective requirement on maintenance policy 
compliance is subject to critique. This work does not resolve controversy about the
recordings of due dates of maintenance work orders. The maintenance policy validation 
in this case study therefore does not entirely comply with the inference objective about 
“common sense evidence” in this respect.

5.2 Choice of a sampling procedure

In this section, we will compose three candidate samples built on the same recording 
routines:

- The case organisation’s conventional performance indicators (Figure 20);
- An alternative at an increased sampling rate (Figure 21);
- A dichotomous alternative (Figure 22).

Section 3.2.2 explained the importance of a sampling rate that enables reconstruction of 
the original signal. The plot of daily output and monthly availability (Figure 16) and the
plot of delayed maintenance (Figure 18) showed that the case organisation’s convention 
of recording maintenance policy compliance and functionality can be improved with 
respect to the sampling rate. To avoid longitudinal redundancy, an increased sampling 
rate also requires an adjustment of the case organisation’s maintenance performance 
indicators. In this section, we will construct an alternative approach to measure the case 
organisation’s common sense of maintenance policy compliance and functionality. We 
suspect that this alternative at an increased sampling rate serves inference precision.

Section 4.5.5 explained that the reliability engineering argument and the nonparametric 
argument additionally constrain the composition of the sample. In this section, we will 
assess to what extent the candidate samples satisfy these constraints.

Figure 20, Figure 21 and Figure 22 depict the candidate samples that we will consider 
for the maintenance policy validation. Figure 20 shows the case organisation’s 
convention to represent functionality by monthly availability Y and maintenance 
policy compliance by the monthly queue of delays DM. Figure 21 shows a cardinal 
alternative that is expected to suit the maintenance prognostic argument. Functionality 
is now represented by the daily output QT and maintenance policy compliance by the 
daily queue of delays DT. Finally, Figure 22 shows a dichotomous alternative that is 
expected to suit the reliability engineering argument and the nonparametric argument. 
Now functionality is expressed by the dichotomous variable YT from Equation 45 and 
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policy compliance is represented by the dichotomous variable ST that we will introduce 
in Equation 49.

Figure 20 Time series of the case organisation’s performance indicators (d,y)[1,m]

Figure 21 Time series of the increased sampling rate alternative (d,q)[1,t]

Figure 22 Time series of the dichotomous alternative (s,y)[1,t]

Section 5.2.1 and Section 5.2.2 will discuss functionality QT maintenance policy 
compliance DT in Figure 21 respectively. Section 5.2.3 and Section 5.2.4 will discuss
functionality YT and maintenance policy compliance ST in Figure 22 respectively.

5.2.1 Alternative for functionality at an increased sampling rate

The case organisation’s convention to measure functionality has been built on daily 
output recordings. Figure 16 already showed that monthly availability Y did not 
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reconstruct the daily output QT on which it was built. We therefore consider daily output
QT as an alternative representation of the common sense about functionality.

Figure 23 Scatter plots of the one-step-ahead dependence in QT and YM

Figure 23 shows the one-step-ahead dependence in both daily output and monthly 
availability. The monthly availabilities Y and Y seem independent whereas daily 
output QT and QT+1 seem dependent as can be concluded from the many data points on 
the diagonal QT=QT+1. So, Figure 23 reconfirms that knowledge about Y is 
uninformative about Y whereas QT predicts QT+1 rather well.

Figure 23 also confirms that daily output QT either takes a high or a low value. By 
further increasing the sampling rate, more spikes in the output signal may be revealed.
Still, daily output outperforms monthly availability in its reconstructive capabilities. At 
least, daily output QT adequately captures the major drops in functionality.

Figure 24 Observed frequency of functionalities QT and YM

In Section 4.4.3, we conceived an information set V={lt,kt,kt+1} with identical {kt} as a 
replication for the nonparametric argument (Figure 15). Since any empirical validation 
requires a sufficient number of replications, the observed frequencies of functionality 
KT in the candidate samples is important. Figure 24 shows these observed frequencies 
of the corresponding daily output QT and monthly availability Y . The observed 
frequencies in the sample (d,y)[1,70] range over [0,16] and those in the sample (d,q)[1,1977]
range over [0,30]. In addition, the nonparametric argument requires that these [0,16] 
respective [0,30] replications (=V given {kt}) should comprise sufficient instances of
different {lt} to test for independence between maintenance policy compliance LT and
functionality KT+1. However, we found many identical U={lt,kt} in the samples (d,y)[1,70]
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and (d,q)[1,1977]. We therefore deem the samples (d,y)[1,70] and (d,q)[1,1977] as inadmissible 
evidence for a maintenance policy validation by the nonparametric argument.

Even in the tentative case that the samples (d,y)[1,70] and (d,q)[1,1977] would have had a
sufficient number of different {lt} at a constant {kt}, Figure 24 still shows that y [1,70]
and q[1,1977] are scattered over 19 and 1750 different values respectively, which is just a 
subset of the infinite sample space of these functionality variables. In Section 4.4.3, we 
explained that the nonparametric argument only existentially confirms the prima facie 
causality in Equation 41 if all possible values kt are in the sample. This means that the 
cardinal samples (d,y)[1,70] and (d,q)[1,1977] could never existentially confirm the prima 
facie causality in Equation 41 by the nonparametric argument, but they may refute it or 
leave it undetermined. In the context of this work, the maintenance policy validation by 
the nonparametric argument and a cardinal sample could then only infer that 
maintenance is either unjustified or unjustifiable but not that it is justified. However, the 
maintenance policy validation by the maintenance prognostic argument and a cardinal 
sample could still existentially confirm or refute the prima facie causality in Equation 
41 at some degree of inference precision. Therefore, the cardinal samples (d,y)[1,70],
(d,q)[1,1977] are better suited to the maintenance prognostic argument than to the 
nonparametric argument.

We deem the cardinal functionality y[1,m] and q[1,t] as unnecessarily precise for the 
nonparametric argument. We doubt whether adjacent functionality values in Figure 24
should really be seen as different replications. The inadmissibility of the cardinal 
samples (d,y)[1,70], (d,q)[1,1977] is therefore insufficient reason to disqualify the 
nonparametric argument.

5.2.2 Alternative for policy compliance at an increased sampling rate

The case organisation’s convention expresses maintenance policy compliance by a 
monthly queue of delayed maintenance. Figure 18 already showed that a daily queue DT
better reconstructs the original signal. We therefore consider a daily queue DT as an 
alternative representation of the organisation’s common sense about maintenance policy 
compliance.

Figure 25 Scatter plot of the one-step-ahead dependence in DT and DM
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Figure 25 confirms that a one-step-ahead dependence in the daily queue DT appears to 
be much stronger than the dependence in the monthly queue DM. The overdue times of 
the 2209 delays with a functionality risk are shown in Figure 26. The overdue time is 
the number of days that has passed since the required completion date. As the typical 
overdue time is several to many days, this confirms that a daily sampling rate suffices to 
reconstruct the queue signal. 

Figure 26 Cumulative distribution of the overdue times with a functionality risk

Figure 26 shows that the queue is poorly refreshed within a day, since a large portion of 
the maintenance actions is overdue for at least 10 days. So, a maintenance action that 
resides in the queue today will often still be there tomorrow. Figure 25 therefore shows 
that DT is a strongly autoregressive signal. About 400 maintenance actions are even 
overdue for more than one month. Still, Figure 25 shows a poor autocorrelation in DM,
which is mainly due to some outliers. By suspending these few outliers, we may also 
recognise an autoregressive property of DM in Figure 25. However, this suspension 
would hamper a causal inference because these outliers are the informative peaks in 
Figure 18 that could potentially most clearly trigger a functionality effect. Since the case 
organisation only records maintenance actions by calendar date, a daily sampling rate is 
the highest attainable rate for maintenance policy compliance in this case study. 
However, the overdue times in Figure 26 also suggest that an increase of the sampling 
rate is superfluous. 

Figure 27 Observed frequency of maintenance policy compliance DT and DM

In Section 4.3.3, we conceived an information set V={lt,kt,kt+1} with identical {lt} as a 
replication for the reliability engineering argument (Figure 14). Since any empirical 
validation requires a sufficient number of replications, the observed frequencies of 
maintenance policy compliance LT in the candidate samples is important. Figure 27
shows the observed frequencies of the corresponding daily queue DT and monthly queue 
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DM. The observed frequencies in the sample (d,y)[1,70] range over [0,4] and those in the 
sample (d,q)[1,1977] range over [0,114]. A maintenance policy validation by the reliability 
engineering argument discards many rarely observed replications, but we still deem the 
samples (d,y)[1,70], (d,q)[1,1977] as admissible to the reliability engineering argument in 
principle. Evidently, the observed frequencies of the organisation’s convention d[1,m] are 
less promising than those of the alternative d[1,t].

Figure 27 shows the observed frequencies of the corresponding daily queue DT and 
monthly queue DM. In Figure 27, d[1,m] and d[1,t] are scattered over 41 and 123 different 
values respectively, which is just a subset of the infinite sample space of these 
maintenance policy compliance variables. In Section 4.3.3, we explained that the 
reliability engineering argument only existentially refutes the prima facie causality in 
Equation 41 if all possible values lt are in the sample. This means that the cardinal 
samples (d,y)[1,70] and (d,q)[1,1977] could never existentially refute the prima facie 
causality in Equation 41 by the reliability engineering argument, but they may confirm 
it or leave it undetermined. In the context of this work, the maintenance policy 
validation by the reliability engineering argument and a cardinal sample could then only 
infer that maintenance is either justified or unjustifiable but not that it is unjustified. 
However, the maintenance policy validation by the maintenance prognostic argument 
and a cardinal sample could still existentially confirm or refute the prima facie causality 
in Equation 41 at some degree of inference precision. Therefore, the cardinal samples 
(d,y)[1,70], (d,q)[1,1977] are better suited to the maintenance prognostic argument than to 
the reliability engineering argument.

Due to the observational research, we have no control over the observed frequencies in 
Figure 27. The most frequent replications in d[1,m] and d[1,t] are all rather close to the 
mean of DM and DT respectively, whereas Figure 20 and Figure 21 suggest that 
particularly the major perturbations in maintenance policy compliance appear to be the 
most promising for a functionality effect. It is not counterintuitive to presume that the 
queue of delays with a functionality risk is just one of many causes of functionality. 
Therefore, we would not be surprised if subtle changes in the queue DT do not find a 
functionality response. The most frequent replications in d[1,m] and d[1,t], that are the 
most promising replications from a statistical viewpoint, might therefore not be the 
preferred ones for the maintenance policy validation. 

We deem the cardinal maintenance policy compliance d[1,m] and d[1,t] as unnecessarily 
precise for the reliability engineering argument. We doubt whether adjacent values of 
maintenance policy compliance in Figure 27 should be seen as different experiments. 
The reliability engineering argument may infer more precisely from a less precise 
categorical representation of maintenance policy compliance that does not scatter the 
evidence over so many different replications.

5.2.3 Dichotomous alternative for functionality

The case organisation adopted a dichotomous functionality YT as defined by Equation 
45 (i.e. daily output larger or smaller than 16). Figure 28 shows the time series of both 
daily output q[1,1977] and dichotomous functionality y[1,1977]. Figure 28 shows that the 
dichotomous functionality YT adequately captures the most important transitions from a 
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high daily output QT (YT=1) to a low daily output QT (YT=0) while ignoring the less 
important fluctuations in QT. We therefore consider YT as an appropriate dichotomous 
alternative for the common sense about functionality in terms of output. 

Figure 28 Continuous QT and categorical YT representations of functionality

A dichotomous functionality YT appears to be widely explored. For example, any 
remaining useful life prediction relies on a dichotomous life or death variable. From the 
many possible trajectories of functionality, a state holding time (duration) of an upstate 
or a downstate seems the most important for decision making. These state holding times 
may therefore efficiently capture the behaviour of interest over a time interval. For the 
cardinal functionality [1,70] and q[1,1977] on the contrary, we typically cannot reduce the 
functionality trajectories of interest to some finite number. For the case study, Figure 
24’s observed frequencies leave little hope to even infer a two-day-ahead trajectory of 
functionality.

In Section 4.4.3, we conceived an information set V={st,yt,yt+1} with identical {yt} as a 
replication for the nonparametric argument (Figure 15). Since any empirical validation 
requires a sufficient number of replications, the observed frequencies of functionality 
YT in the candidate samples is important. From Figure 28, it follows that the time series 
y[1,t] comprises 307 replications of YT=0 and 1669 replications of YT=1. In addition, the 
nonparametric argument requires that these 307 and 1669 replications (=V given {yt}) 
respectively should comprise sufficient instances of {st} and {st’} to compare the 
observed frequencies of functionality YT+1, given U={st,yt} and U’={st’,yt}. For the 
dichotomous sample (s,y)[1,1976], the sample space of U is finite, i.e. 
U={{0,0},{0,1},{1,0},{1,1}} and the observed frequencies of these U’s are 277, 1643, 
30 and 25 respectively. We therefore deem the dichotomous sample (s,y)[1,1976] as 
admissible evidence for a maintenance policy validation by the nonparametric 
argument.

The nonparametric argument requires that the dichotomous sample (s,y)[1,1976]
comprises a sufficient number of every element in the sample space of U={st,yt} to
existentially confirm or refute the prima facie causality in Equation 41 at some degree 
of inference precision. Evidently, this similarly holds for the maintenance prognostic 
argument that takes any information set V={st,yt,yt+1} from the dichotomous sample 
(s,y)[1,1976] as a replication. Therefore, the dichotomous sample (s,y)[1,1976] equally suits 
the maintenance prognostic argument and the nonparametric argument.
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5.2.4 Dichotomous alternative for maintenance policy compliance

We may consider a dichotomous variable ST that captures the larger leaps in the queue 
DT. For the complex multiple component item in this case study, we may expect that the 
composition of the queue is as important as its length. A cardinal queue DT or DM may 
scatter the sample over many different values. Some less precise dichotomous ST that 
extracts the larger fluctuations may ultimately serve inference precision. We therefore 
define some ST by Equation 49, separating large queue extensions (by more than 4) of 
the daily queue DT from smaller and possibly less interesting queue extensions.

= 0,  41,  > 4 49

Figure 29 shows that maintenance policy compliance ST captures the observed 
explosions in the queue very well. The case organisation does not use some ST. Thus,
maintenance policy compliance ST is just an additional construct that may serve the
maintenance policy validation. Still, we consider ST as the dichotomous alternative for 
the common sense about maintenance policy compliance.

Figure 29 Discrete DT and categorical ST representations of policy compliance

In Section 4.3.3, we conceived an information set V={st,yt,yt+1} with identical {st} as a 
replication for the reliability engineering argument (Figure 14). Since any empirical 
validation requires a sufficient number of replications, the observed frequencies of 
maintenance policy compliance ST in the candidate samples is important. From Figure 
29, it follows that the time series s[1,t] comprises 1920 replications of ST=0 and 55 
replications of ST=1. We therefore deem the dichotomous sample (s,y)[1,1976] as 
admissible evidence for a maintenance policy validation by the reliability engineering 
argument.

The reliability engineering argument requires that the dichotomous sample (s,y)[1,1976]
fully covers the sample space of maintenance policy compliance ST to test for the prima 
facie causality in Equation 41. Since ST=0 and ST=1 are both represented in the 
dichotomous sample (s,y)[1,1976], the reliability engineering argument could existentially 
confirm or refute the prima facie causality in Equation 41 at some degree of inference
precision. Evidently, this similarly holds for the maintenance prognostic argument that 
takes any information set V={st,yt,yt+1} from the dichotomous sample (s,y)[1,1976] as a 
replication. Therefore, the dichotomous sample (s,y)[1,1976] equally suits the maintenance 
prognostic argument and the reliability engineering argument.
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5.2.5 Findings regarding the choice of a sampling procedure

This section will present the potential effect of the candidate samples on the inference 
precision of the maintenance policy validation. We conceived the information set 
V={lt,kt,kt+1} of the prima facie causality in Equation 41 as leading for the definition of 
a replication. The reliability engineering argument and the nonparametric argument 
prohibit particular causal explanations by holding some element in the information set 
V constant. This means that the reliability engineering argument only takes information 
sets V={lt,kt,kt+1} with identical {lt} as a replication and that the nonparametric 
argument only takes information sets V={lt,kt,kt+1} with identical {kt} as a replication 
(Table 6). For the dichotomous sample (s,y)[1,t], the sample space of both maintenance 
policy compliance ST and functionality YT is {0,1}. Therefore, the number of possible 
replications for the reliability engineering argument and for the nonparametric argument 
is also two. For the cardinal samples (d,y)[1,m] and (d,q)[1,t], the sample space of 
maintenance policy compliance and functionality is infinite. Therefore, the number of 
possible replications for the reliability engineering argument and for the nonparametric 
argument is also infinite (Table 6).

As a result, the reliability engineering argument cannot existentially refute the prima 
facie causality in Equation 41 by the samples (d,y)[1,m] and (d,q)[1,t] because it cannot 
test for independence at all dm and dt respectively. Similarly, the nonparametric 
argument cannot existentially confirm the prima facie causality in Equation 41 by the 
samples (d,y)[1,m] and (d,q)[1,t] because it cannot assess the likelihood of independence at 
all ym and qt respectively.

From Table 6, it follows that only the dichotomous sample (s,y)[1,t] could either 
existentially confirm or existentially refute the prima facie causality in Equation 41 by 
the maintenance prognostic argument, the reliability engineering argument and the 
nonparametric argument.

Maintenance 
optimisation 
argument

Maintenance 
prognostic 
argument

Reliability 
engineering 
argument

Nonparametric 
argument

Definition of a 
replication

All {lt,,kt} All {lt,kt,kt+1} All {lt,kt,kt+1}
given {lt}

All {lt,kt,kt+1}
given {kt}

(d, )[1,t] 1 1

(d,q)[1,t] 1 1

(s,y)[1,t] 1 1 2 2

Table 6 Number of possible replications in V

Table 6 only lists the number of possible replications, whereas Table 7 lists the 
observed frequency of the replications in the specific case study. The observed 
frequencies for the maintenance optimisation argument and the maintenance prognostic 
argument directly follow from the length of the time series. The observed frequencies 
for the reliability engineering argument follow from Figure 27 and Figure 29 and the 
observed frequencies for the nonparametric argument follow from Figure 24 and Figure 
28.
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Maintenance 
optimisation 
argument

Maintenance 
prognostic 
argument

Reliability 
engineering 
argument

Nonparametric 
argument

Definition of a 
replication

All {lt} All {lt,kt,kt+1} All {lt,kt,kt+1}
given {lt}

All {lt,kt,kt+1}
given {kt}

(d, )[1,70] 70 69 [0,4] [0,16]

(d,q)[1,1977] 1977 1976 [0,114] [0,30]

(s,y)[1,1976] 1976 1975 55,1920 307,1668

Table 7 Observed frequencies of replications in the case study

Unsurprisingly, the observed frequencies range from zero where the number of possible
replications is infinite. Moreover, the observed frequencies in the samples (d,q)[1,1977]
and (s,y)[1,1976] that have been collected at a daily sampling rate seem to be more prolific
than the observed frequencies in the sample (d,y)[1,70] that follow the case organisation’s 
convention. The sample (s,y)[1,1976] in the case study includes all possible replications. 
So, the sample (s,y)[1,1976] potentially complies with the additional constraints on its 
composition as required for maintenance policy validation by the reliability engineering 
argument and the nonparametric argument.

5.3 Validation of the arguments

In this section, we will attempt to validate the candidate arguments from Chapter 4 by 
the samples (d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976] from Section 5.2. In Table 5, we 
already preliminarily compared the arguments from Chapter 4 on inference precision.
We will now expand on this comparison by involving the evidence about the case study.

A spatiotemporally constrained sample (l,k)[1,t] only comprises some l,t,k which is 
insufficient for the prima facie causality in Equation 41 that holds at some l and all t,k. 
The observational research construct does not support universal claims about the 
population (l,k)[1, >. Still, we could existentially claim the likelihood of the prima facie 
causality in Equation 41. We will infer this likelihood by using the maintenance 
prognostic argument, the reliability engineering argument and the nonparametric 
argument in this section. The universal refutation of the maintenance optimisation 
argument will straightforwardly follow from the sample (l,k)[1,t].

We will conclude this section with a choice of the argument and the sample that most 
precisely infers a claim regarding the prima facie causality in Equation 41 in this 
realistic case study.

5.3.1 Validation of the maintenance optimisation argument

The maintenance optimisation argument does not require a notion of causality. Its 
model M1 just asserts that functionality KT and maintenance policy compliance LT are 
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equivalent.= ( ) 50

The samples (d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976] refute Equation 50 since they all 
include counterexamples of maintenance policy values lt that map to several 
functionality values kt and conversely; i.e. Figure 20, Figure 21 and Figure 22 refute 
Equation 50. This refutation is universal. So, enlarged samples will not change our 
position. We therefore conclude that the case organisation’s common sense definition of 
maintenance policy compliance and functionality does not comply with the model M1 
of the maintenance optimisation argument. 

Many maintenance optimisations define an upstate/downstate as equivalent to the 
absence/presence of a maintenance queue. This alternative definition would refute all 
recorded maintenance actions in the case study as inadmissible evidence since none of 
these 6342 maintenance actions complied with this equivalence. We may resolve this 
conflict in definitions by decomposing the item into components. At least, the 
widespread applications of fault trees and reliability block diagrams suggests some 
resilience of an item’s functionality against component faults that may in fact coincide 
with the presence of a maintenance action.

Let us therefore explore an attempt to unify the case organisation’s definition of 
maintenance with the alternative definition of these maintenance optimisations. Then, 
the following equivalence would exist:( , … , = , … , ) ( , … , = , … , ) 51

where the series Xi represents presence or absence of an uncompleted maintenance 
action and the series Ki represents the functionality of the item’s components. Then, we 
should firstly assess the logic K=f(Ki) that maps the component functionality Ki to the 
item’s functionality K. For cases where combinatorial logic does not suffice, Rauzy 
(2008) and Remenyte-Prescott and Andrews (2009) extended to incoherency and Vesely 
(2002), DiStefano and Puliafito (2008) and Xu et al. (2009) extended to dynamic logic. 
Still, Zio (2009) remarked that components increasingly operate in networks (system of 
systems), the behaviour of which may seem to be chaotic and only subjectively 
assessable. In addition, Bucci et al. (2008), Yuge and Yanagi (2008), Schüller (1997)
and Bobbio et al. (2003) warned about state space explosions that make an explicit 
statement about a presumed mapping K=f(Ki) a tedious job. Never mind that we may 
simply be unable to efficiently collect the evidence for its empirical validation.
Otherwise, K=f(Ki) remains arbitrary expert judgement that affects inference precision.

Secondly, Bouissou and Bon (2003), Vaurio (1998), Walter et al. (2008) and Rehage 
and Carl (2005) recognised that faults may propagate within an item. So, past values of 
the series Ki influence functionality predictions. For a posterior validation of Equation 
51, predictions are not needed but they are needed in maintenance decision making that 
can only influence the future. Even under a presumed Markov property that only takes
the current value of the vector KT in a body of knowledge U={k1,t,…,km,t} may already 
appear to be too large to efficiently collect the evidence to enable the empirical 
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validation of the one-step-ahead functionality vector KT+1:

, | , | , , … , , 52

Finally, the case organisation’s common sense definition of maintenance includes some 
counterexamples like online inspections that can only be executed on an item in upstate.
Therefore, we will never find an Equation 51 that unifies the case organisation’s 
common sense definition with the alternative definition of many maintenance 
optimisations. We choose to retain the case organisation’s common sense definition of 
maintenance, which implies a universal refutation of the maintenance optimisation 
argument as already suspected in Table 5.

5.3.2 Validation of the maintenance prognostic argument

Figure 13 showed that the maintenance prognostic argument comprises all three 
causality principles (Section 2.3.3). Therefore, the maintenance prognostic argument 
would have been decidable about causality if it were sound. In Section 4.2.1, we already 
suspected being deprived of in-depth knowledge about a universal model M2 and about 
a universal error distribution P6 in a typical case study. We therefore resort to some 
existential claim about the likelihood of some presumed model M2 and some presumed 
error distribution P6. Likelihood ratios generally favour the highest dimensional model 
from a set of nested candidate models because it would be entirely coincidental that 
maximum likelihood estimations yield a zero parameter. This section will alternatively 
illustrate an information theoretical approach to model selection that is less supportive 
to high dimensional models. Still, this information theoretical approach will not resolve 
both the model uncertainty and the parameter uncertainty of the maintenance prognostic 
argument which affects inference precision.

The maintenance prognostic argument takes any information set V={P3,P4} of the 
prima facie causality in Equation 41 as a replication (Table 7). For the samples (d,y)[1,70]
and (d,q)[1,1977], we will show that the model uncertainty and the parameter uncertainty 
are irresolvable. We will just evaluate some linear regression models, which leaves 
uncertainty about the adequacy of other possible candidate model families. However, 
for the sample (s,y)[1,1976] we will show that the model uncertainty is potentially 
eliminable without additional presumptions. Then, we will evaluate all Bernoulli 
models that are possible within an information set V={lt,kt,kt+1} of the prima facie 
causality in Equation 41.

This section will proceed with a concise and informal introduction to Kullback-Leibler 
information that underlies the model selection criteria that we use: Akaike’s Information 
Criterion AIC (Akaike, 1973) and Akaike’s Corrected Information Criterion AICc
(Hurvich & Tsai, 1989). We will then demonstrate how AIC and AICc could decide 
about the existence of a prima facie causality for the samples (d,y)[1,70], (d,q)[1,1977] and 
(s,y)[1,1976]. We will finally review the initial assessment of the inference precision of a 
maintenance policy validation by the maintenance prognostic argument in Table 5.

Let g(lt,kt) represent the true probability of functionality KT+1.
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Let f(lt,kt of functionality KT+1 that 
follows from the antecedents of the model M3 in Figure 13 that comprise the 

Then, the Kullback-Leibler information I(g,f) follows from:

( , ) = ( , )( , | ) ( , ) = ( , ) ( , )( , | ) 53

Equation 53 reads as: “The amount of information lost when the true probability g(lt,kt)
of functionality KT+1 has been approximated by the probability function f(lt,kt| )”. If the 
approximating probability function were true, i.e. f(lt,kt| )=g(lt,kt), the Kullback-Leibler 
information would be zero I(g,f)=0. The notation g(lt,kt) just conveys that the 
integration is over lt,kt, the full truth does not need human concepts like probability 
functions and parameters. Equation 53 can alternatively be expressed as the difference 
between two expectations:( , ) = ( , ) ( , ) ( , ) ( , | ) 54

For the presumed approximating probability function f(lt,kt| 0), the parameters 0 that 
minimise the loss of information follow from the derivative:( , ) = ( , ) ( , ) ( , ) ( , | ) = 0 55

Provided that I(g,f) is continuous and convex in 0:( , ) > 0 56

The true probability g(lt,kt) is independent of human conceptions like a presumed best 
approximating probability function f(lt,kt| 0). Even in the fictitious case of a true 
probability function, f(lt,kt| 0)=g(lt,kt), the true parameters 0 would have been a
constant. Therefore, the first term in Equation 54 rules out as a constant C that could be 
ignored in its derivative (Equation 55):( , ) = ( , ) ( , | ) 57

Equation 57 shows the amount of information lost when the true probability g(lt,kt) has 
been approximated by the probability function f(lt,kt| 0) where 0 represents the true 
best approximating parameters in f(lt,kt| 0). So, the model selection target is to find 
some best approximating probability function f(lt,kt| 0) among a set of candidates that 
minimises Equation 57. If the true probability g(lt,kt) were known, Equation 57 would 
have been an adequate model selection criterion to compare various approximating 
probability functions f(lt,kt| ) and to assess their best parameters 0 by Equation 55.
Since the true probability g(lt,kt) is typically unknown, Equation 57 is not 
straightforwardly assessable, but we may estimate the best parameters 0 from some 
“good” sample (l,k)[1,t]. Akaike (1973) therefore tried to find a rigorous way to estimate 
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an expectation of the last term in Equation 57 from a “good” sample (l,k)[1,t]:

( , )[ , ] ( , ) ( , )[ , ]| 58

Akaike (1973) realised that the most likely parameters mle that are estimated from a 
“good” sample (l,k)[1,t] are biased estimates for the expected loss of information:

( , )[ , ] ( , ) < ( , )[ , ] ( , ) ( , )[ , ]| 59

However, under specific conditions, an asymptotically unbiased estimation of the 
expected loss of information in Equation 59 follows from:

( , )[ , ] ( , ) = + |( , )[ , ] 60

Where ln(.) represents the log likelihood function and K the number of estimable 
parameters . As opposed to Equation 57, Equation 60 provides a model selection 
criterion that is straightforwardly estimable from a “good” sample (l,k)[1,t]. Akaike 
(1973) proposed a model selection criterion AIC that is based on minimising the 
expected loss of information in Equation 60 by:

= 2 × |( , )[ , ] 61

A “good” sample should comprise random trials from the true probability g(lt,kt). A 
stratified time series (l,k)[1,t] collected by observational research can therefore not be 
deemed as “good”. In Section 4.2.3, we already mentioned that it would be odd to 
distinguish identical information sets V as different experiments in a test for a prima 
facie causality. We therefore initially presume the non-causalities that hold for the 
information set V as shown in Figure 11. These presumed non-causalities will only be 
validated in Section 5.5.3 by exploiting the information about time in the sample 
(l,k)[1,t].

A “good” sample should also be sufficiently large because as the number of estimable 
parameters K increases in comparison with the sample size N, the model selection 
criterion AIC is known to become negatively biased, i.e. the last term in Equation 59 is 
underestimated by the last term of Equation 60. This bias can lead to overfitting. We 
therefore consider a small sample correction AICc that is exactly unbiased if the true 
probability g(lt,kt) is a linear regression model (Hurvich & Tsai, 1989). As the sample 
size N increases, AICc reduces to AIC:

= 2 × 1 |( , )[ , ] 62

The relative AIC score with respect to the best approximating probability function 
fmin(lt,kt| 0) among an arbitrary set of alternatives fi(lt,kt| 0) is assessable by:= 63
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Equation 63 expresses the relative loss of information if the true probability g(lt,kt) were 
approximated by the probability function fi(lt,kt| 0) rather than by the best 
approximating probability function fmin(lt,kt| 0) in that arbitrary set of alternatives. If the 
relative AIC score is small, i.e. AIC<2, the probability function fi(lt,kt| 0) would still 
be a relatively good approximation with respect to the best approximating probability 
function fmin(lt,kt| 0). If the relative AIC score is big, i.e. AIC>10, the candidate 
probability function fi(lt,kt| 0) should be ignored (Burnham & Anderson, 2010). As we 
could typically only evaluate a finite number of approximating probability functions 
fi(lt,kt| 0) from an infinite set of possible candidates, the outcome of Equation 63 may be 
overthrown by an up-to-now unconsidered better approximating probability function 
f’min(lt,kt| 0).

AIC allows for comparisons of non-nested candidate models (i.e. linear and non-linear 
models) as long as they all map to the same conclusion. So, mappings to kt+1 and ln(kt+1)
are not immediately comparable. Moreover, an AIC score only holds for a specific 
sample. So, we cannot say which of the samples (d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976] has 
the lowest expected information loss. In the remainder of this section, we will compare 
the expected information loss of some candidate models M3:fi(lt,kt| 0) for the samples 
(d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976] separately.

The maintenance prognostic argument in Figure 13 comprises an approximating 
probability function M3:Pr(P4|P3,M2,P6) that has three antecedents:
P3: A proposition that straightforwardly follows from common sense about the 

sample (l,k)[1,t].
M2: A controversially presumed model that maps the proposition P3 to the 

conclusion C2, i.e. an estimation of the functionality KT+1.
P6: A controversially presumed error distribution that is independent of the 

proposition P3. Equation 42 already showed that P4=M2(P3)+P6.
As explained in Section 4.2.1, the maintenance prognostic argument remains 
undecidable because of the controversy about the universal model M2 and about the 
universal error distribution P6. Still, we could existentially claim the likelihood of some 
arbitrarily presumed model M2 and some arbitrarily presumed error distribution P6.

The samples (d,y)[1,70] and (d,q)[1,1977] allow for an infinite set of possible presumptions 
regarding the model M2 and the error distribution P6. In this exposition, we only select 
some linear regression models that presume (i) linearity for the model M2 and (ii) a 
normal error distribution P6. These additional presumptions regarding the parameters 
do not rely on in-depth knowledge about the case study. The inferred claim regarding 
the prima facie causality in Equation 41 therefore only holds with respect to the 
arbitrary set of linear regression models that we considered.

In Section 4.2.3, we conceived every information set V={P3,P4}={lt,kt,kt+1} as a 
replication to validate a claim regarding the prima facie causality in Equation 41 by the 
maintenance prognostic argument. For the cardinal samples (d,y)[1,70] and (d,q)[1,1977], a
replication could include the following linear regression model families:3 : ( = + (0,1)                              ) ( )3 : ( = + + (0,1)                ) ( )3 : ( = + + + (0,1)   ) ( ) 64
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The linear regression models in Equation 64 imply an approximating probability 
function M3: Pr(P4|P3,M2,P6) for functionality KT+1 with the parameters 
={p0,p1,p2, 2}:

3: | , ( | , , ) = 12 = 12 ( )
65

The linear regression models M30 and M31 refute the prima facie causality in Equation 
41 by the parameter P2=0 which implies that maintenance policy compliance LT cannot 
have any effect on functionality KT+1. On the other hand, the linear regression model
M32 confirms the prima facie causality in Equation 41 by the parameter P2 0 which 
implies that maintenance policy compliance LT does affect functionality KT+1. Since we 
could not compose an exhaustive set of possible approximating probability functions for 
the cardinal samples (d,y)[1,70] and (d,q)[1,1977], any subset of approximating probability 
functions (like those in Equation 64) is insufficient to conclusively validate a 
maintenance policy by the maintenance prognostic argument. The set of regression 
models in Equation 64 does not originate from in-depth knowledge that could alleviate 
the model uncertainty that hampers inference precision. Still, we could existentially 
claim the prima facie causality in Equation 41 with respect to this arbitrary set of 
regression models in Equation 64. We just proceed with an assessment of the AIC 
scores of the linear regression models in Equation 64:

The likelihood of a linear regression model with parameters follows from:

|( , )[ , ] = ( , )[ , ]| = 12 66

So, the log likelihood function is:

|( , )[ , ] = 12 (2 ) 12 ( ) 2 67

The maximum likelihood parameters mle follow from the derivative of Equation 67:

|( , )[ , ] = 0 68

Provided that Equation 68 is continuous and concave in mle:

|( , )[ , ] < 0 69

The most likely parameters mle enable an assessment of the AIC scores of the linear 
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regression models in Equation 64:

= 2 × |( , )[ , ] 70

The model M30 has two estimable parameters ={p0, 2}, i.e. K=2 and M32 has four 
estimable parameters ={p0,p1,p2, 2}, i.e. K=4. This implies that the higher dimensional 
model M32 could only attain a preferred lower AIC score if it is sufficiently more likely 
than the model M30. If we were to alternatively select a linear regression model from 
Equation 64 by a log likelihood ratio LR, the prima facie causality in Equation 41
would become nearly irrefutable because it would be entirely coincidental that the
maximum likelihood estimation of the parameter P2 is exactly zero. Still, we will assess 
the log likelihood ratio LR with respect to the most parsimonious linear regression 
model M30:

= 3 |( , )[ , ] 3 |( , )[ , ] 71

Table 8 now surveys the results for the N=69 replications that we found in the sample 
(d,y)[1,70]:

- The maximum likelihood estimation of the parameters for each linear 
regression model in Equation 64;

- The number of estimable parameters K for each linear regression model in 
Equation 64;

- The relative AIC score and the relative AICc score that follow from Equation 
63 for each linear regression model in Equation 64;

- The log likelihood LR of each linear regression model in Equation 64 that 
follows from Equation 71.

Table 8 shows that all candidate models are nearly equally likely since LR 0. So, the 
empirical support as implied by the relative AIC scores (Burnham & Anderson, 2010)
in Table 8 is nearly entirely driven by the number of parameters K in Equation 61.
Then, the relative AIC scores favour the most parsimonious model M30 (with the 
smaller number of parameters for the sample (d,y)[1,70]. The model M30 considers 
functionality YM+1 as independent trails from a normal distribution. So, the models M31
and M32 appear to be overfitting.

MLE distribution of P4=M2(P3)+P6 K LR AIC AICc

M30 = 0,83 + 0,20 (0,1) 2 0 0 0

M31 = 0,84 0,02 + 0,20 (0,1) 3 0,01 2 2

M32 = 0,88 0,04 + 0, … + 0,20 (0,1) 4 0,22 4 4

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 8 Relative information loss of some models M3 for (d,y)[1,70]
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This confirms our suspicion that the case organisation’s convention to maintenance 
performance does not allow for predictions by some linear model, nor do the scatter 
plots in Figure 23 suggest that some nonlinear model would have allowed for these 
predictions. Tentatively, the empirical support for the model M30 may be overthrown by 
some unconsidered candidate model but the evolution of DM and YM in Figure 20 does
not allude to obvious alternative candidate models. Still, we deem this result as 
indecisive about the existence of the prima facie causality in Equation 41 because the 
monthly sampling rate of the sample (d,y)[1,70] evidently did not adequately reconstruct 
the original signals as required in Section 3.2.2. Possibly, the functionality response to 
maintenance policy compliance just remained invisible due to the low sampling rate.
The maintenance policy validation by the maintenance prognostic argument and the 
sample (d,y)[1,70] remains indecisive about the prima facie causality in Equation 41. We 
therefore conclude:

Maintenance policy compliance LT may or may not prima facie cause 
functionality KT+1 with respect to the information set V={lt,kt,kt+1}.

MLE distribution of P4=M2(P3)+P6 K LR AIC AICc

M30 = 18,69 + 7,72 (0,1) 2 0 17574 17574

M31 = 3,53 + 0,81 + 4,52 (0,1) 3 8781 14 14

M32 = 3,80 + 0,81 0,01 + 4,52 (0,1) 4 8789 0 0

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 9 Relative information loss of some models M3 for (d,q)[1,1977]

We show analogous results for the N=1976 replications that we found in the sample 
(d,q)[1,1977] in Table 9. As opposed to the sample (d,y)[1,70], the sample (d,q)[1,1977] shows 
extremely little empirical support for the most parsimonious model M30. Evidently, the 
sample (d,q)[1,1977] gives a much better reconstruction of the original signal as required 
in Section 3.2.2.

The results in Table 9 strongly support the model M32 that existentially confirms the 
prima facie causality in Equation 41. This existential confirmation may be overthrown 
by some unconsidered candidate model that outperforms the model M32 in expected 
information loss. This concern is realistic for the sample (d,q)[1,1977] because the scatter 
plot in Figure 23 already showed that the dependence between QT and QT+1 is far from 
linear. Moreover, we know that the output, on which functionality QT+1 has been built, 
is physically constrained between some upper and lower limit, whereas maintenance 
policy compliance DT is in [0, >. Figure 21 shows that functionality Q tends to reside 
at either a high or a low output and that maintenance policy compliance D evolves like 
some random walk with some outliers. We therefore deem none of the linear regression 
models in Table 9 as likely. However, under the acceptance of this model uncertainty, 
the maintenance policy validation by the maintenance prognostic argument and the 
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sample (d,q)[1,1977] would existentially confirm the prima facie causality in Equation 41.
We therefore conclude:

If model uncertainty has been accepted, maintenance policy compliance DT
would prima facie cause functionality QT+1 with respect to the information set 
V={dt,qt,qt+1}.

In Figure 11, we specified (by omitting arrows) the non-causality assumptions of the 
maintenance prognostic argument that allow us to interpret an existential confirmation 
of the prima facie causality in Equation 41 as being causal. Pearl (2010) and Spirtes 
(2000) already warned that the path graphs like those in Figure 11 do not conclusively 
follow from statistical associations. For example the presumed independencies between 
LT, B and KT, B remain untestable because the background variable B remains 
unobserved, which delimits any causal interpretation of an inferred prima facie cause. 
However, the path graph of the maintenance prognostic argument in Figure 11 also 
presumes an independence between LT and KT that is straightforwardly testable. This 
independence between LT and KT prevents functionality KT from being a mediator 
LT KT KT+1 or from being a confounder KT (LT,KT+1). In the latter case, 
maintenance policy compliance would not cause functionality KT or KT+1 despite an 
existential confirmation of the prima facie causality in Equation 41.

We now proceed with a test for the independence between DT and QT by the 
maintenance prognostic argument and the sample (d,q)[1,1977].1 , ,, 1 ,, , 1 = 1,00 0,24 0,220,24 1,00 0,810,22 0,81 1,00 72

The correlation matrix in Equation 72 shows a strong linear dependence between 
functionality QT and QT+1 but in fact functionality Q just resides at either a high or a low 
value as shown in Figure 21. Although the best approximating function M32 also 
confirmed a linear dependence between maintenance policy compliance DT and 
functionality QT+1, Equation 72 shows that this is actually the weakest linear 
dependence in the information set V={dt,qt,qt+1}.

MLE distribution of QT K LR AIC AICc

M33 = 18,69 + 7,72 (0,1) 2 0 1377 1377

M34 = 20,37 0,06 + 7,50 (0,1) 3 690 0 0

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 10 Relative information loss of some models Pr(QT|DT, ) for (d,q)[1,1977]

Table 10 compares an arbitrary set of two candidate linear regression models that 
existentially confirm (M33) or existentially refute (M34) the independence between DT
and QT. We did not involve functionality QT+1 because QT+1 is known not to influence 
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the relation between DT and QT due to the first causality principle (Section 2.3.3)
asserting that the future cannot cause the past. Table 10 shows no empirical support for 
the model M33 that existentially confirms the independence between DT and QT as 
required by the path graph of the maintenance prognostic argument in Figure 11. This 
result allows for the existence of the alternative causal structures QT (DT,QT+1) and 
DT QT QT+1 that is problematic for making a causal interpretation of the inferred 
prima facie causality in Equation 41 as implied by the best approximating probability 
function M32 in Table 9. We therefore ultimately deem that the maintenance policy 
validation by the maintenance prognostic argument and the sample (d,q)[1,1977] is 
insufficient for the justification of maintenance that we pursue in this work.

For the dichotomous sample (s,y)[1,1976], it would be inappropriate to conceive the 
distribution of functionality YT+1 as some linear regression model that allows for an 
infinite sample space of YT+1. A Bernoulli model is the obvious choice of the 
distribution of the dichotomous functionality YT+1. The approximating probability 
function Pr(P4|P3,M2,P6) in the maintenance prognostic argument in Figure 13 would 
then reduce to some Bernoulli model with parameters that holds for some given body 
of knowledge U={st,yt} that has been claimed by proposition P3:3: | , (1| = { , }, ) = (1 ) 73

Since the body of knowledge U={st,yt} has a finite sample space, i.e. 
{{0,0},{0,1},{1,0},{1,1}}, the maintenance prognostic argument becomes potentially 
decidable about these four presumed Bernoulli parameters ={p{0,0},p{0,1},p{1,0},p{1,1}}.
Table 11 surveys all possible equalities and inequalities among these four Bernoulli 
parameters .

Candidate Bernoulli model Causal implication
M3A: { , }; { , }; { , }; { , } ( )
M3B: { , } = { , }; { , }; { , } ( )
M3C: { , } = { , }; { , }; { , } ( )
M3D: { , } = { , }; { , }; { , } ( )
M3E: { , }; { , } = { , }; { , } ( )
M3F: { , }; { , } = { , }; { , } ( )
M3G: { , }; { , }; { , } = { , } ( )
M3H: { , }; { , } = { , } = { , } ( )
M3I: { , }; { , } = { , } = { , } ( )
M3J: { , }; { , } = { , } = { , } ( )
M3K: { , }; { , } = { , } = { , } ( )
M3L: { , } = { , }; { , } = { , } ( )
M3M: { , } = { , }; { , } = { , } ( )
M3N: { , } = { , }; { , } = { , } ( )
M3O: { , } = { , } = { , } = { , } ( )

Table 11 All possible Bernoulli models M3 and their prima facie causal claim

The Bernoulli model M3A presumes that every element in is unique and the other 
extreme Bernoulli model M3O presumes that all four elements in are equal. Table 11
shows that the existence of the prima facie causality in Equation 41 follows from the 
equality or the inequality of these Bernoulli parameters .
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The prima facie causality in Equation 41 only exists in those cases where the Bernoulli 
parameter PU that produced functionality YT+1 depends on maintenance policy 
compliance ST at both values of functionality YT. For example, the Bernoulli model 
M3C has different Bernoulli parameters at YT=1 (p{0,1} p{1,1}) and the same Bernoulli 
parameter at YT=0 (p{0,0}=p{1,0}). Therefore, M3C refutes the prima facie causality in 
Equation 41 because the Bernoulli parameter PU only depends on maintenance policy 
compliance ST at YT=1 and not at YT=0. This is problematic for the third causality 
principle (Section 2.3.3), which asserts that maintenance policy compliance ST
comprises unique information about functionality YT+1 that is not otherwise available.

The set of candidate models in Table 11 is complete. Therefore, the inferred relative 
AIC scores that reveal the best approximating model do not merely hold with respect 

to some arbitrary set of candidate models. This makes the maintenance prognostic 
argument decidable in terms of AIC scores for the sample (s,y)[1,1976] provided that we 
are willing to evaluate all candidate Bernoulli models. In this specific case, we proceed 
with an assessment of the relative AIC scores of all candidate Bernoulli models in
Table 11:

Let NU be the observed frequency of functionality YT+1 that come from the same 
Bernoulli process. In the case of M3O where all information sets V={st,yt,yt+1} come 
from the same Bernoulli process, NU is just the observed frequency of these information 
sets V={st,yt,yt+1}. In the other extreme case of M3A where all information sets 
V={st,yt,yt+1} given U={st,yt} come from the same Bernoulli process, NU is a vector of 
four elements each representing the observed frequency of information sets 
V={st,yt,yt+1} given U={st,yt}.

Let KU be the observed frequency of YT+1=1 among the NU observations.
Let every instance of the NU cases be generated by a Bernoulli process with parameter 
PU;

Then, the likelihood (=probability of observing the sample (s,y)[1,t], given some 
candidate Bernoulli model in Table 11), is given by:

( )|( , )[ , ] = × (1 )( ) 74

So, the log likelihood function is:

( )|( , )[ , ] = ( ) + ( ) (1 ) 75

The maximum likelihood estimation of a Bernoulli parameter PU in follows from the 
derivative of Equation 75:( ) + ( ) (1 ) = 0 = 76
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Provided that Equation 76 is continuous and concave in pmle:( ) + ( ) (1 ) < 0 ( )( ) < 0 77

The most likely parameters mle enable an assessment of the AIC scores of the candidate 
Bernoulli models in Table 11:

= 2 × ( ) + ( ) (1 ) + 78

The Bernoulli model M3O has a single estimable parameter ={p}, i.e. K=1 and the 
Bernoulli model M3A has four estimable parameters ={p{0,0},p{0,1},p{1,0},p{1,1}}, i.e. 
K=4. This implies that the higher dimensional model M3A could only attain a preferred 
lower AIC score if it is sufficiently more likely than the model M3O. If we were to 
alternatively select a Bernoulli model from Table 11 by a log likelihood ratio LR, the 
prima facie causality in Equation 41 would become nearly irrefutable because it would 
be entirely coincidental that the maximum likelihood estimations of the Bernoulli 
parameters in M3A are exactly equal. Still, we will assess the log likelihood ratio LR 
with respect to the most parsimonious Bernoulli model M3O:

= 3 |( , )[ , ] 3 |( , )[ , ] 79

Table 12 now surveys the results for the N=1975 information sets V={st,yt,yt+1} that we 
found in the sample (s,y)[1,1976]:

- The maximum likelihood estimation of the Bernoulli parameters for each 
Bernoulli model in Table 11;

- The number of estimable parameters K for each Bernoulli model in Table 11;
- The relative AIC score that follows from Equation 63 and Equation 78 for each 

Bernoulli model in Table 11;
- The log likelihood LR of each Bernoulli model in Table 11 that follows from 

Equation 79.

The relative AIC scores in Table 12 show the strongest empirical support for the 
Bernoulli model M3F. The Bernoulli model M3F implies that maintenance policy 
compliance ST positively associates with functionality when the item is in downstate 
(YT=0) as p{0,0}>p{1,0}. However, the Bernoulli model M3F also implies that 
maintenance policy compliance ST is independent of functionality YT+1 when the item is 
in upstate (YT=1) as p{0,1}=p{1,1}. For the prima facie causality in Equation 41, the 
positive association should be revealed at all values of YT to ensure that maintenance
policy compliance ST uniquely determined functionality YT+1. The Bernoulli model M3F
therefore existentially refutes the prima facie causality in Equation 41 in terms of AIC
scores. On the other hand, the Bernoulli model M3A that existentially confirms the 
prima facie causality in Equation 41 also receives substantial empirical support. 

The candidate Bernoulli models M3F are just a subset of the candidate Bernoulli models
M3A, i.e. M3F is nested in M3A. Therefore, the most likely Bernoulli model M3F cannot 
attain a higher likelihood than the most likely Bernoulli model M3A.
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MLE distribution of P4=M2(P3)+P6 K LR AIC

M3A { , } =   58277 { , } = 15851643 { , } =      130 { , } =     2425 4 451 2

M3B { , } = { , } = 16431920 { , } =      130 { , } =     2425 3 52 798

M3C { , } = { , } =    59307 { , } = 15851643 { , } =     2425 3 448 7

M3D { , } = { , } =    82302 { , } = 15851643 { , } =     130 3 421 61

M3E { , } = { , } = 15861673 { , } =   58277 { , } =     2425 3 365 173

M3F { , } = { , } = 16091668 { , } =   58277 { , } =     130 3 451 0

M3G { , } = { , } =      2555 { , } =   58277 { , } = 15851643 3 422 59

M3H { , } =    58277 { , } = { , } = { , } = 16101698 2 365 171

M3I { , } = 15851643 { , } = { , } = { , } =   83332 2 416 70

M3J { , } =      130 { , } = { , } = { , } = 16671945 2 51 799

M3K { , } =      2425 { , } = { , } = { , } = 16641950 2 2 898

M3L { , } = { , } = 16431920 { , } = { , } =     2555 2 23 855

M3M { , } = { , } =    59307 { , } = { , } = 16091668 2 448 5

M3N { , } = { , } =   82302 { , } = { , } = 15861673 2 335 231

M3O { , } = { , } = { , } = { , } = 16681975 1 0 899

Level of 
empirical 
support for a 
model

c

scores
Contingency table

ST=0 
YT=0

ST=1 
YT=0

ST=0 
YT=1

ST=1 
YT=1

Substantial: 0-2 YT+1=0 219 58 29 1
Considerably less: 4-7 YT+1=1 58 1585 1 24
Essentially none: >10

Table 12 Relative information loss of all Bernoulli models M3 for (s,y)[1,1976]

In Table 12, the most likely Bernoulli models M3A and M3F are indeed about equally 
likely (LR 451) and the more parsimonious model M3F is only a better approximation 
of functionality YT+1 because it has fewer parameters K in Equation 61. So, although the 
Bernoulli model M3A and M3F both carry substantial empirical support to approximate 
functionality YT+1, we ultimately conclude:

Maintenance policy compliance ST does not prima facie cause functionality YT+1
with respect to the information set V={st,yt,yt+1}.

This finding is not easily overthrown since we considered all possible Bernoulli models 
for functionality YT+1 that are possible within the information set V={st,yt,yt+1}
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resembling the prima facie causality in Equation 41. In this respect, the inference 
precision by the maintenance prognostic argument favours the dichotomous sample 
(s,y)[1,1976] rather than the cardinal samples (d,y)[1,70] and (d,q)[1,1977] that require 
knowledge beyond the information set V to choose a candidate model 
M3:Pr(P4|P3,M2,P6). On the other hand, a dichotomous operationalisation (s,y)[1976] is 
less precise than the cardinal operationalisations (d,y)[1,70] and (d,q)[1,1977]. In this case 
study, we deemed that the inference precision suffers less from a dichotomous 
operationalisation than from the unavoidable model uncertainty of a cardinal 
operationalisation. In other cases, a “good” cardinal candidate model 
M3:Pr(P4|P3,M2,P6) may be preferred.

This section showed that the case organisation’s convention to operationalise 
maintenance performance by the sample (d,y)[1,70] did not enable predictions of 
functionality YM+1 by the maintenance prognostic argument. By adopting either of the 
alternative samples (s,y)[1,1976] or (d,q)[1,1977] the case organisation would have been able 
to make these predictions. Although the relative AIC and AICc scores deduced for 
the sample (d,q)[1,1977] existentially confirmed the prima facie causality in Equation 41,
we ultimately deemed this finding imprecise due to the model uncertainty and due to the 
existential refutation of the independence between DT and QT that was required for a
causal interpretation of this existentially confirmed prima facie causality in Equation 41.

Table 5 already suspected that the maintenance prognostic argument would be 
undecidable due to controversy about the model M2 and the error distribution P6. The 
samples (d,y)[1,70], (d,q)[1,1977] confirmed our preliminary dithering about the 
maintenance prognostic argument in Table 5. However, the sample (s,y)[1,1976] appeared
to resolve the model uncertainty of the maintenance prognostic argument provided that 
we are willing to evaluate all candidate Bernoulli models. Within the delimitations of 
the prima facie causality in Equation 41, the maintenance prognostic argument appeared
to be decidable by the sample (s,y)[1,1976] in terms of AIC scores. The maintenance 
policy validation by the maintenance prognostic argument and the sample (s,y)[1,1976]
appeared to be the most precise, but it existentially refuted the prima facie causality in 
Equation 41.

5.3.3 Validation of the reliability engineering argument

Figure 14 showed that the reliability engineering argument includes all three causality 
principles (Section 2.3.3) only for KT KT+1. It does not presume a specific relation 
between maintenance policy compliance LT and functionality KT+1. Still, the reliability 
engineering argument would have been decidable about the prima facie causality in 
Equation 41 if it were sound. In Section 4.3.1, we already suspected being deprived of
in-depth knowledge about a universal model M2 and the presumption P6 on the errors 
at some given maintenance policy compliance LT in a typical case study. We therefore 
resort to some existential claim as we have already demonstrated for the maintenance 
prognostic argument.

For the case study, a reduction of the domain from M2:f(lt,kt) to M2:f(kt) does not really 
resolve controversy. So, the reliability engineering argument seems similarly 
encumbered with the model selection problem that we already discussed for the 
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maintenance prognostic argument in Section 5.3.2. In this exposition, we confine 
ourselves again to the candidate linear regression models in Equation 64 for the cardinal 
samples (d,y)[1,70], (d,q)[1,1977] and to the candidate Bernoulli models in Table 11 for the 
dichotomous sample (s,y)[1,1976].

For the cardinal samples (d,y)[1,70], (d,q)[1,1977], we simply confine ourselves to two 
(fixed) maintenance policy compliance values that are (i) very different and that (ii)
frequently occur in the samples as shown in Figure 27.

MLE distribution of P4=M2(P3)+P6 K LR AIC AICc

M30 = 0,83 + 0,15~ (0,1) 2 0 0 0

M31 = 0,71 + 0,14 + 0,15 (0,1) 3 0,16 2 5

M32 |    = 2,97 + 4,00 + 0,08 (0,1)| = 0,94 0,26 + 0,13 (0,1) 6 2,93 2 84

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 13 Relative information loss of some models M3 for (d,y)[1,70]

Table 13 depicts the findings for the values DM=2 and DM=26 that both occur four times
in the sample (d,y)[1,70]. Clearly, the reliability engineering argument inefficiently uses
the sample (d,y)[1,70] because it discards much of the potentially useful information in 
(d,y)[1,70]. Table 7 already showed that the observed frequency of the replications in the 
sample (d,y)[1,70] ranges over [0,4] for the reliability engineering argument. Figure 27
already showed that 38 out of 41 distinguishable replications occur fewer than three 
times in the sample (d,y)[1,70]. For those replications, it is impossible to estimate the 
three parameters in ym+1=p0+p1ym+ N(0,1). We therefore just involved the N=8 
replications at DM=2 and DM=26 that most frequently occurred in the sample (d,y)[1,70]
while at the same time being very different. Note that the maintenance policy validation 
by the maintenance prognostic argument and the sample (d,y)[1,70] in Table 8 relied on 
N=69 replications.

Table 13 reveals that the model M30 that considers functionality YM+1 as independent 
trials from a normal distribution achieves the lowest AIC and AICc scores. However, the 
corresponding AIC and AICc scores differ and should be distrusted. AIC is only 
asymptotically precise as the number of replications N tends to infinity whereas N=8 in 
this case. AICc is precise for a finite sample on the presumption that the true model is 
among the candidate linear regression models, which would seem to be a strong 
presumption in this case. Even if we were to follow these distrusted AIC and AICc
scores in Table 13, the models M31 and M32 again tend to be overfitting. This confirms 
our suspicion that the case organisation's convention to maintenance performance does 
not allow for predictions by some linear model.

In Section 4.3.3, we already explained that the reliability engineering argument cannot 
existentially refute the prima facie causality in Equation 41 if maintenance policy 
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compliance has a cardinal scale. Therefore, the empirical support for models M30 and 
M31 in Table 13 is not existentially refuting the prima facie causality in Equation 41 and 
only empirical support for the model M32 would have existentially confirmed it. So, 
even if we just follow the distrusted AIC and AICc scores in Table 13, the existence of 
the prima facie causality in Equation 41 has been left undetermined.

In Section 5.3.2, we already deemed the maintenance policy validation by the 
maintenance prognostic argument and the sample (d,y)[1,70] as indecisive about the 
prima facie causality in Equation 41 due to the monthly sampling rate that did not 
adequately reconstruct the original signals as required in Section 3.2.2. We now showed 
that the maintenance policy validation by the reliability engineering argument and the 
sample (d,y)[1,70] is even less precise. We therefore conclude:

Maintenance policy compliance LT may or may not prima facie cause 
functionality KT+1 with respect to the information set V={lt,kt,kt+1}.

Table 14 depicts the findings for the values DT=3 and DT=24 that occur 114 and 61
times respectively in the sample (d,q)[1,1977]. Clearly, the reliability engineering 
argument also very inefficiently uses the sample (d,q)[1,1977]. Table 7 already showed 
that the observed frequency of the replications in the sample (d,q)[1,1977] ranges over
[0,114] for the reliability engineering argument. Figure 27 already showed that 53 out of 
123 distinguishable replications occur fewer than three times in the sample (d,q)[1,1977].
For those replications, it is impossible to estimate the three parameters in
qt+1=p0+p1qt+ N(0,1). We therefore just involved the N=175 replications at DT=3 and 
DT=24 that frequently occur while at the same time being very different. Note that the 
maintenance policy validation by the maintenance prognostic argument and the sample 
(d,q)[1,1977] in Table 9 relied on N=1976 replications.

MLE distribution of P4=M2(P3)+P6 K LR AIC AICc

M30 = 19,73 + 6,16 (0,1) 2 0 774 774

M31 = 7,63 + 0,62 + 4,63 (0,1) 3 348 80 80

M32 |    =   4,29 + 0,78 + 3,62 (0,1)| = 10,83 + 0,48 + 5,87 (0,1) 6 391 0 0

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 14 Relative information loss of some models M3 for (d,q)[1,1977]

The results in Table 14 are consistent with those in Table 9. Again the model M32 that 
existentially confirms the prima facie causality in Equation 41 receives the strongest 
empirical support. This existential confirmation may be overthrown by some 
unconsidered candidate model that outperforms the model M32 in expected information 
loss. However, under the acceptance of this model uncertainty, the maintenance policy 
validation by the reliability engineering argument and the sample (d,q)[1,1977] would 
existentially confirm the prima facie causality in Equation 41.
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We therefore conclude:

If model uncertainty has been accepted, maintenance policy compliance DT
would prima facie cause functionality QT+1 with respect to the information set 
V={dt,qt,qt+1}.

The non-causality assumptions of the reliability engineering argument do not differ 
from those of the maintenance prognostic argument. Still, the requirement of a constant 
maintenance policy compliance DT prohibits the following causal explanations for the 
observed dependencies in the information set V={dt,qt,qt+1}: DT QT, DT QT+1,
DT (QT,QT+1). So, the stronger support for the model M31 as compared to the model 
M30 in Table 14 cannot be explained by the confounder DT (QT,QT+1) or the mediator 
QT DT QT+1 which attributes to a causal interpretation of the inferred prima facie 
causality QT QT+1 with respect to the information set V={dt,qt,qt+1}. Still, the path 
graph of the reliability engineering argument in Figure 11 requires independence 
between DT and QT to allow for a causal interpretation of the inferred prima facie 
causality in Equation 41 as implied by the strongest empirical support for the model 
M32.

Table 15 compares the two candidate models that existentially confirm (M33) and 
existentially refute (M35) the independence between DT and QT. We did not involve 
functionality QT+1 because QT+1 is known not to influence the relation between DT and 
QT due to the first causality principle (Section 2.3.3) asserting that the future cannot 
cause the past. Table 15 shows no empirical support for the model M33 that existentially 
confirms the independence between DT and QT as required by the path graph of the 
reliability engineering argument in Figure 11. This result allows for the existence of the 
alternative causal structures QT (DT,QT+1) and QT DT QT+1 that are problematic for
a causal interpretation of the inferred prima facie causality in Equation 41 as implied by 
the best approximating probability function M32 in Table 14. We therefore ultimately 
deem that the maintenance policy validation by the reliability engineering argument and 
the sample (d,q)[1,1977] is insufficient for the justification of maintenance that we pursue 
in this work.

MLE distribution of QT K LR AIC AICc

M33 = 19,46 + 6,52 (0,1) 2 0 25 25

M35 |   = 19,66 + 5,63 (0,1)| = 19,07 + 7,97 (0,1) 4 14,63 0 0

Level of empirical 
support for a model

c scores

Substantial: 0-2
Considerably less: 4-7
Essentially none: >10

Table 15 Relative information loss of some models Pr(QT|DT, ) for (d,q)[1,1977]

Finally, a maintenance policy validation by the reliability engineering argument and the 
sample (s,y)[1,1976] equals the maintenance policy validation by the maintenance 
prognostic argument and the sample (s,y)[1,1976] because the sample space of ST only 
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contains two values, i.e. {0,1}. Therefore, no evidence from the sample (s,y)[1,1976] will 
be discarded.

This section showed that the reliability engineering argument causes concerns 
resembling the concerns that were raised for the maintenance prognostic argument. 
Moreover, the reliability engineering argument very inefficiently used the samples 
(d,y)[1,70] and (d,q)[1,1977] because many replications did not occur frequently enough to 
estimate the parameters of some candidate model M3. However, the maintenance policy 
validation by the reliability engineering argument and the sample (s,y)[1,1976] is exactly 
the same as was explained for the maintenance prognostic argument in Section 5.3.2.

Table 5 already suspected that the reliability engineering argument would be 
undecidable due to controversy about the model M2 and the error distribution P6. The 
samples (d,y)[1,70], (d,q)[1,1977] confirmed our preliminary dithering about the reliability 
engineering argument in Table 5. However, a maintenance policy validation by the 
reliability engineering argument and the sample (s,y)[1,1976] appeared to resolve the 
model uncertainty of the reliability engineering argument. Within the delimitations of 
the prima facie causality in Equation 41, the reliability engineering argument appeared
to be decidable by the sample (s,y)[1,1976] in terms of AIC scores.

5.3.4 Validation of the nonparametric argument

The nonparametric argument in Figure 15 falsifies the second and the third causality 
principle if it were sound. Since universal independence does not follow from a 
stratified sample (l,k)[1,t], the nonparametric argument just infers an existential claim 
regarding the likelihood of the presumptions P5 and P7. In this section, we will only 
assess this likelihood for the dichotomous sample (s,y)[1,1976] because we already 
disqualified the cardinal samples (d,y)[1,70] and (d,q)[1,1977] for the maintenance policy 
validation by the nonparametric argument in Section 5.2.1.

The nonparametric argument may be instantiated by an exact conditional approach to 
compare two independent binomial proportions that reasons as follows:

Let NU be the observed frequency of identical U={lt,kt} in the sample (l,k)[1,t-1];
Let NU’ be the observed frequency of identical U’={lt’,kt} in the sample (l,k)[1,t-1];
Let us arbitrarily define a “win” as some subset of the sample space of KT+1 that is “of 
interest”. The complementary set of a “win” is a “loss”. So, we essentially build a 
dichotomous (“win” or ”loss”) variable on KT+1. The dichotomous functionality YT+1 as 
defined in Equation 45, could instantiate a “win” or “loss” definition.
Let KU be the observed frequency of V={U,”win”} in the sample (l,k)[1,t];
Let KU’ be the observed frequency of V={U’,”win”} in the sample (l,k)[1,t];
Let every “win” among the NU replications be generated by a Bernoulli process with 
parameter PU;
Let every “win” among the NU’ replications be generated by a Bernoulli process with 
parameter PU’;

The latter two presumptions seem strong, but for a prima facie causality that is confined
to an information set V={lt,kt,kt+1}, it would be odd to distinguish identical information 
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sets as different experiments. We therefore argue that these two presumptions do not 
enlarge the encumbrance of a presumption regarding the prima facie causality in 
Equation 41. In Section 4.4.3, we explained that the nonparametric argument takes any 
information set V={lt,kt,kt+1} with identical {kt} as a replication for the prima facie 
causality in Equation 41. So, information sets V that comprise either U or U’ that differ 
in {lt} but not in {kt}, should be seen as replications.

Then, the joint distribution of KU,KU’ is given by:

, ( , ) = (1 )( ) (1 )( ) 80

Because information sets V that comprise either U or U’ have been posited as 
replications, maintenance policy compliance LT must be independent of functionality 
KT+1 at a given KT as implied by the presumptions P5 and P7 of the nonparametric 
argument. So, the parameters PU and PU’ of the Bernoulli processes are presumed to be 
equal and Equation 80 transforms to:

, ( , ) = ( )(1 )( ) 81

Since NU and NU’ are disjoint counts, N=NU+NU’ and K=KU+KU’ holds for the union. 
Then, the distribution of the joint number of “wins” K is given by:

( ) = (1 )( ) = ( )(1 )( ) 82

The observed frequencies KU,KU’,NU,NU’ are straightforwardly assessable from the 
sample (l,k)[1,t]. Still, the distributions in Equation 81 and Equation 82 require an 
estimation of the Bernoulli parameter P. However, the joint distribution of KU,KU’
conditioned on the distribution of the joint number of “wins” K does not require an 
estimation of the Bernoulli parameter P:

, ( , )( ) = ( )(1 )( )
( )(1 )( ) = 83

The hypergeometric distribution in Equation 83 is a direct consequence of the observed 
frequencies KU,KU’,NU,NU’ and the presumed equality of the Bernoulli parameters: 
PU=PU’. Since the observed frequencies KU,KU’,NU,NU’ follow from common sense, 
Equation 83 expresses the likelihood of the controversial presumption PU=PU’ without 
an estimation of the Bernoulli parameter P=PU=PU’.

The statistical significance of this independence follows from the p-value. The p-value 
generally indicates the probability to observe frequencies that are at least as extreme as 
the ones actually observed. Loosely phrased, an extreme frequency c on the
presumption of PU=PU’ is any observed frequency KU, KU’ among the NU, NU’ cases that 
enlarges the difference |(KU/NU)-(K/N)|. More precisely, the p-value follows from:
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 =          1
         1 84

If the p-value in Equation 84 is above some significance lev , the observed frequency 
KU, KU’ among the NU, NU’ cases was apparently not that extreme since more extreme 
values are likely. The presumption of PU=PU’ that implied Equation 83 has then 
existentially been confirmed.  Conversely, if the p-value in Equation 84 is below some 
significance lev , the observed frequency KU, KU’ among the NU, NU’ cases was 
apparently extreme since more extreme values are unlikely. The presumption of PU=PU’
that implied Equation 83 has then existentially been refuted. Conventionally, some test 
statistic (like the Wald-statistic) that requires an estimation of the Bernoulli parameter 
P=PU=PU’ identifies the extreme values c in Equation 84. To show that these extreme 
values c also directly ensue from the hypergeometric distribution in Equation 83, we 
present an alternative proof:

Proof
This proof essentially asserts under what conditions a number of “wins” (c=ku+1) in the hypergeometric 
distribution in Equation 83 yields a likelihood that is at least as low as the observed frequency KU, KU’
among the NU, NU’ cases.

+ 1 1 85

We ignore the constant denominator which reduces Equation 85 to:

!( + 1)! ( 1)! !( 1)! ( + 1)!!! ( )! !! ( )!
+ 1 + 1
+ 1 ( ) ( ) + 1

86

Equation 86 is true when the denominator satisfies:

( + 1) ( ) 12 87

And the numerator satisfies:( ) ( ) ( ) + 1  2 + 2 + 1 88
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To identify the minimum value of NU in Equation 88, KU should take the minimal value of zero. 
However, KU has been bound by Equation 87.

2 + 2 12 + 1 2 89

Equation 87 and Equation 89 then specify that the proportion KU/NU should satisfy:1
90

Equation 90 states the criterion for which values of KU the value (c=ku+1) will be identified as “more 
unlikely” as indicated in Equation 84. The extreme values of KU’ are similarly identifiable. 

Only the dichotomous sample (s,y)[1,1976] potentially suffices for the maintenance policy 
validation by the nonparametric argument according to Section 5.2.3. Still, the 
nonparametric argument may only existentially confirm or refute the prima facie 
causality in Equation 41. We now repeat the earlier presented inference by the 
nonparametric argument for the sample (s,y)[1,1976].

Let NU be the observed frequency of U={st,yt}={0,1} in the sample (s,y)[1,t-1], i.e. 
NU=1643;
Let NU’ be the observed frequency of U’={st’,yt}={1,1} in the sample (s,y)[1,t-1], i.e. 
NU’=25; 
Let a “win” for the sample (s,y)[1,1976] follow from the case organisation’s common 
sense in Equation 45:

= 0; , " "1; , " "      91

Let KU be the observed frequency of V={U,”win”} in the sample (s,y)[1,1976], i.e. 
KU=1585;
Let KU’ be the observed frequency of V={U’,”win”} in the sample (s,y)[1,1976], i.e. 
KU’=24;
Let K=KU+KU’=1609 and N=NU+NU’=1668 as shown in Equation 82.
Let presumption P5, P7 be true. Note that P5 is uncontroversial.

Then, the p-value is:

 =  1
92 = 1643 25160916681609  15851643 1609 11668

 = 1643 25160916681609 = 0,5963
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The p-value expresses the probability of observing proportions that are at least as 
extreme as the observed frequencies KU, KU’ among the NU, NU’ cases, given the truth 
of the presumptions P5 and P7. High p-values that are above some arbitrary significance 
level existentially confirm the presumptions P5 and P7. Conversely, low p-values that 
are below this arbitrary significance level existentially refute the presumptions P5 and 
P7. So, Equation 92 existentially confirms the presumptions P5 and P7 at an arbitrary 
significance level =0,01. The presumptions P5 and P7 only imply independence 
between maintenance policy compliance ST and functionality YT+1. In Equation 44, we 
already explained how this independence relates to the prima facie causality in Equation 
41. Applied to this case study, Equation 44 transforms to:

| , (1|0, ) = |, (1| ) |( , )[ , ] <  ; ( ) 93

Equation 93 shows that an existential confirmation of the prima facie causality in 
Equation 41 follows from a low likelihood at some s and all y,t. Although Equation 92
already provided a counterexample of likely independence at YT=1, we still list the 
results for both YT=0 and YT=1 in Table 16.

If both p-values in Table 16 were below an arbitrary significance level =0,01
indicating that the independence between maintenance policy compliance ST and 
functionality YT+1 would be unlikely for all yt, we would have existentially refuted the 
prima facie causality between maintenance policy compliance ST and functionality YT+1
with respect to the information set V={st,yt,yt+1}. Since none of the p-values in Table 16
is below =0,01, we conclude:

Maintenance policy compliance ST does not prima facie cause functionality YT+1
with respect to the information set V=(st,yt,yt+1}.

The sample (s,y)[1,1976] comprised all elements of the sample space of the information 
set V. Still, the observed frequencies NU of identical U={st,yt} in the sample (s,y)[1,1976]
ranged from 25 to 1643 (Table 16) which might have contributed to the existential 
refutation of the prima facie causality in Equation 41 at an arbitrary significance level

=0,01. These significance levels allow for comparisons of different samples like 
(d,y)[1,70], (d,q)[1,1977] in principle whereas the relative AIC or AICc scores do not 
allow for comparisons between the different samples like (d,y)[1,70], (d,q)[1,1977] and 
(s,y)[1,1976].

The path graph of the nonparametric argument in Figure 11 showed that an eventual 
dependence between ST and YT would not have been problematic for a causal 
interpretation of an existential confirmation of the prima facie causality in Equation 41.
Since YT has been held constant, YT cannot act as a confounder YT (ST,YT+1) or as a 
mediator ST YT YT+1 to alternatively explain the dependence between ST and YT+1
that we did not actually observe in this case study (Table 16).

The preliminary assessment of inference precision in Table 5 already indicated that the 
nonparametric argument would be decidable in terms of likelihood. However, the 
nonparametric argument also imposed severe constraints on the composition of the 
sample. 
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Number of identical 
U={st,yt}

Number of identical 
V={U, upstate}
upstate: YT+1=1

Observed proportion p-value

NU=N{0,0}    =  277 KU=K{0,0}    = 58 KU/NU =0,209
0,0105NU’=N{1,0}  =    30

N=NU+NU’=  307
KU’=K{1,0}  = 1
K=KU+KU’=  59

KU’/NU’=0,033
(K-1)/N =0,189

NU=N{0,1}    =1643 KU=K{0,1}    =1585 KU/NU =0,965
0,5963NU’=N{1,1}  =    25

N=NU+NU’=1668
KU’=K{1,1}  =    24
K=KU+KU’=1609

KU’/NU’=0,960
(K-1)/N =0,964

Table 16 P-values for the sample (s,y)[1,1976], given P5, P7 of the NPA

The case study confirmed that the sample (s,y)[1,1976] complied with these constraints but 
the samples (d,y)[1,70] and (d,q)[1,1977] appeared to be inadmissible evidence.

5.3.5 Findings regarding the validation of the arguments

In Section 5.3, we reduced the maintenance policy validation to the assessment of the 
prima facie causality in Equation 41. We confronted candidate arguments with 
candidate samples to confirm the preliminary assessment of the inference precision in 
Table 5 by a realistic case study. We now summarise the main findings in Table 17:

- The “decidable argument” inference objective for the candidate arguments and 
samples because the candidate arguments mainly differed in the “decidable 
argument” inference objective in Table 5.

- The sufficiency of the sampling efficiency for the candidate arguments and 
samples to assess whether the sampling issues from Section 4.5.5 apply to this 
specific case study.

- The claim of the candidate arguments and samples about the prima facie 
causality in Equation 41 to confirm the preliminary findings in Table 5
regarding the aim of this work.

We will now discuss the columns in Table 17. Note that Table 17 already includes three
improved arguments (final three rows), that will be introduced in Section 5.4.

The “decidable argument” inference objective
The maintenance optimisation argument only comprised one controversially presumed 
model M1. The maintenance optimisation argument is therefore decidable, but it has 
been refuted by all samples.

For the samples (d,y)[1,70], (d,q)[1,1977], we lacked the in-depth knowledge that would 
have settled the controversy about the model M2 and the error distribution P6 of the 
maintenance prognostic argument and the reliability engineering argument. We naively 
resorted to a model selection from some linear regression model families that did not 
yield any acceptable approximating model. Only for the sample (s,y)[1,1976], we have 
been able to resolve model uncertainty within the information set V={st,yt,yt+1} of the 
prima facie causality in Equation 41. Therefore, only for the sample (s,y)[1,1976], the 
maintenance prognostic argument and the reliability engineering argument appeared to 
be decidable.
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The nonparametric argument only comprised one controversial presumption P7.
Therefore, the nonparametric argument appeared to be decidable in terms of likelihood.

Decidable argument Sufficient sampling 
efficiency

Decidable about 
LT KT+1 w.r.t 
{lt,kt,kt+1}

maintenance 
optimisation 
argument
(Section 4.1)

Yes, but M1 is refuted
(d, )[1,70]:   Yes
(d,q)[1,1977]: Yes
(s,y)[1,1976]:  Yes

No

maintenance 
prognostic 
argument
(Section 4.2)

Only in AIC for
(s,y)[1,1976].

(d, )[1,70]: Yes
(d,q)[1,1977]: Yes
(s,y)[1,1976]:  Yes

Only in AIC for 
(s,y)[1,1976].

reliability 
engineering 
argument
(Section 4.3)

Only in AIC for 
(s,y)[1,1976].

(d, )[1,70]:   No
(d,q)[1,1977]: Yes
(s,y)[1,1976]:  Yes

Only in AIC for
(s,y)[1,1976].

nonparametric 
argument
(Section 4.4) Only in likelihood

(d, )[1,70]:   No
(d,q)[1,1977]: No
(s,y)[1,1976]:  Yes

Only in likelihood for 
(s,y)[1,1976].

weakened maint. 
prognostic 
argument
(Section 5.4.1)

Only in AIC for 
(s,y)[1,1976].

(d, )[1,70]:   No
(d,q)[1,1977]: No
(s,y)[1,1976]:  Yes

Only in AIC for 
(s,y)[1,1976].

extended 
nonparametric 
argument
(Section 5.4.2)

Only in likelihood
(d, )[1,70]:   No
(d,q)[1,1977]: No
(s,y)[1,1976]:  Yes

Only in likelihood for 
(s,y)[1,1976].

reduced 
nonparametric 
argument
(Section 5.4.3)

Only in likelihood
(d, )[1,70]:   Yes
(d,q)[1,1977]: Yes
(s,y)[1,1976]:  Yes

Only in likelihood for 
(d,q)[1,1977],(s,y)[1,1976].

Table 17 Main findings regarding the candidate arguments and samples

Sufficient sampling efficiency
The maintenance optimisation argument did not constrain the composition of the 
sample. All candidate samples therefore appeared to be admissible.

The maintenance prognostic argument did not constrain the composition of the sample. 
All candidate samples therefore appeared to be admissible. However, the sample 
(d,y)[1,70] did not reconstruct the signals of maintenance policy compliance and 
functionality well enough to be compelling for the prima facie causality in Equation 41.

We disqualified the sample (d,y)[1,70] for the reliability engineering argument due to a
lack of observed frequencies of the replications.
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We disqualified the samples (d,y)[1,70] and (d,q)[1,1977] for the nonparametric argument 
due to a lack of observed frequencies of the replications.

In conclusion, only the sample (s,y)[1,1976] appeared to be admissible to all candidate
arguments. The samples (d,q)[1,1977] and (s,y)[1,1976] were taken at a higher sampling rate 
which provided a richer view on the interactions between the elements in the 
information set V.

Decidable about LT KT+1 with respect to {lt,kt,kt+1}
Since not all candidate arguments claim the same about prima facie causality, we also 
survey whether these arguments could decide about the prima facie causality in 
Equation 41.

The maintenance optimisation argument is not a causal argument that could only 
existentially refute the prima facie causality in Equation 41 upon its existential 
confirmation. However, the maintenance optimisation argument has universally been 
refuted by all candidate samples. Still, we found it important to show that a definitional 
equivalence between maintenance policy compliance L and functionality K conflicted
with the case organisation’s common sense about L and K.

For the sample (d,y)[1,70], the maintenance prognostic argument appeared to be
undecidable about the prima facie causality in Equation 41 due to a too low sampling 
rate that insufficiently reconstructed the evolution of maintenance policy compliance 
and functionality. For the sample (d,q)[1,1977] and an arbitrary set of candidate models, 
the maintenance prognostic argument existentially confirmed the prima facie causality 
in Equation 41 but a causal interpretation of this result has been problematic (Table 10). 
For the sample (s,y)[1,1976], the maintenance prognostic argument appeared to 
existentially refute the prima facie causality in Equation 41 in terms of expected 
information loss (AIC).

The reliability engineering argument appeared to be somewhat superfluous as it 
reconciled with the concerns of the maintenance prognostic argument at a lower 
sampling efficiency. 

For the sample (s,y)[1,1976], the nonparametric argument existentially refuted the prima 
facie causality in Equation 41 in terms of likelihood at some arbitrary significance level 

=0,01 (Table 16).

In conclusion, we deem a maintenance policy validation by the nonparametric argument 
and the sample (s,y)[1,1976] as most suitable because of (i) the computational efficiency,
i.e. not all candidate models should be assessed as in the maintenance prognostic 
argument, (ii) the potential to compare different samples at a reduced information set 
V={lt,kt+1}, (iii) the ability to quantify its ambiguity about the prima facie causality in 
Equation 41 by a likelihood whereas the AIC and AICc scores in Section 5.3.2 only 
compared models on expected information loss when approximating functionality KT+1
and (iv) the ability to both existentially confirm and existentially refute the prima facie 
causality in Equation 41 (v) its more compelling causal interpretation of an existential 
confirmation of the prima facie causality in Equation 41 whereas the maintenance 
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prognostic argument and the reliability engineering argument would require an 
additional test for independence between LT and KT as we did in Table 10 and Table 15.

Table 17 also supports the iterative approach to inference precision that we introduced 
in Section 1.4. From the candidate arguments, the maintenance optimisation argument 
claimed the most precise relation between maintenance policy compliance and 
functionality. The case organisation’s maintenance scorecard more completely 
operationalised the goals of the maintenance policy than any bivariate sample (l,k)[1,t].
From the candidate samples, the cardinal sample (d,q)[1,1977] most precisely 
reconstructed the original signals. Still, the most precise inference did not follow from 
combining the most precise argument, operationalisation and sampling procedure.

5.4 An improved inference

In this section, we will pursue an improved inference precision of the maintenance 
policy validation by (i) weakening the non-causality assumptions of the maintenance 
prognostic argument in Section 5.4.1 to abandon the need to test for the independence 
between LT and KT upon an existential confirmation of the prima facie causality in 
Equation 41, by (ii) extending the information set V of the nonparametric argument in 
Section 5.4.2 to seek for long-term functionality responses and by (iii) delimiting the 
information set to V={lt,kt+1} of the nonparametric argument in Section 5.4.3 to make 
all candidate samples admissible to the maintenance prognostic argument.

5.4.1 Weakened maintenance prognostic argument

This section will present an alternative path graph that weakens the non-causality 
assumptions of the maintenance prognostic argument in Figure 11.

The maintenance prognostic argument in Figure 11 required independence between LT
and KT to exclude KT as a mediator LT KT KT+1 or as a confounder KT (LT,KT+1)
that would reduce the prima facie causality in Equation 41 to a spurious cause. The path 
graph of the weakened maintenance prognostic argument excludes this spurious cause
by taking functionality KT as a constant while still allowing for any relation between LT
and KT (Figure 30). So, the path graph in Figure 30 is weakened since it does not 
require the independence between LT and KT as a condition for a causal interpretation of 
an existentially confirmed prima facie causality in Equation 41. The propositions of the 
weakened maintenance prognostic argument and the propositions of the reliability 
engineering argument are almost identical; only KT and LT should be exchanged in 
Figure 14. The sampling issues of the weakened maintenance prognostic argument and
the nonparametric argument are similar since both arguments similarly define a 
replication by the information set V={lt,kt,kt+1} with identical {kt}. Then, it follows 
from Table 17 that only the dichotomous sample (s,y)[1,1976] is admissible to the 
weakened maintenance prognostic argument. 
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Figure 30 Path graph of the weakened maintenance prognostic argument

We now proceed with a maintenance policy validation by the weakened maintenance 
prognostic argument and the sample (s,y)[1,1976] as introduced in Section 5.3.2.

Let a replication be defined as any information set V={st,yt,yt+1} with identical {yt} in 
the sample (s,y)[1,1976].
Let the functionality YT be known.
Then, Table 18 and Table 19 present an exhaustive set of Bernoulli models to be 
considered. In the absence of in-depth knowledge about the true probability, we resort 
to an assessment of the AIC and AICc scores of these Bernoulli models as explained in 
Section 5.3.2. By presuming the functionality YT as a known constant, the number of 
candidate Bernoulli models M3 drops from 15 (Table 11) to 4 (Table 18 and Table 19
together). So, the presumption of a known functionality YT, reduces the analysis burden 
to deduce the AIC and the AICc scores for every possible Bernoulli model M3. 

MLE distribution of P4=M2(P3)+P6 K LR AIC

M3P { , } = 58277 { , } = 130 2 4 0

M3Q { , } = { , } = 59307 1 0 5

Level of 
empirical 
support for a 
model

c

scores
Contingency table

ST=0 YT=0 ST=1 YT=0

Substantial: 0-2 YT+1=0 219 29
Considerably less: 4-7 YT+1=1 58 1
Essentially none: >10

Table 18 Relative information loss of all Bernoulli models M3|YT=0
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Table 18 shows considerably less empirical support for the Bernoulli model M3Q that 
existentially refutes the prima facie causality in Equation 41, given that the item is 
currently down YT=0. We therefore conclude:

If the item is known to be down, maintenance policy compliance ST would prima 
facie cause functionality YT+1 with respect to the information set V={st,yt,yt+1]}.

However, Table 19 shows substantial empirical support for both the Bernoulli model 
M3R and M3S that contradict each other regarding the prima facie causality in Equation
41, given that the item is currently up YT=1. The candidate Bernoulli model M3S is just 
a subset of the candidate Bernoulli model M3R, i.e. M3S is nested in M3R. Therefore, the 
most likely Bernoulli model M3S cannot attain a higher likelihood than the most likely 
Bernoulli model M3R. In Table 19, the most likely Bernoulli model M3R is indeed 
slightly more likely than the Bernoulli model M3S (LR=2). Still, the more parsimonious 
model M3S is a better approximation of functionality YT+1 because it has less 
parameters K in Equation 61. So, although the Bernoulli model M3R and M3S both carry 
substantial empirical support to approximate functionality YT+1, we ultimately conclude:

If the item is known to be up, maintenance policy compliance ST would not
prima facie cause functionality YT+1 with respect to the information set 
V={st,yt,yt+1]}.

MLE distribution of P4=M2(P3)+P6 K LR AIC

M3R { , } = 15851643 { , } = 2425 2 2 2

M3S { , } = { , } = 16091668 1 0 0

Level of 
empirical 
support for a 
model

c

scores
Contingency table

ST=0 YT=1 ST=1 YT=1

Substantial: 0-2 YT+1=0 58 1
Considerably less: 4-7 YT+1=1 1585 24
Essentially none: >10

Table 19 Relative information loss of all Bernoulli models M3|YT=1

The most likely parameters of the Bernoulli model M3P suggest that maintenance policy 
compliance ST=0 contributes to the item’s functionality YT+1=1, given that the item is 
down YT=0:

| { , } { , } = 58277 0,21
94| { , } { , } = 130 0,03

The most likely parameters of the Bernoulli model M3R suggest independence between 
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maintenance policy compliance ST=0 and the item’s functionality YT+1=1, given that the 
item is up YT=1:

| { , } { , } = 15851643 0,96
95| { , } { , } = 2425 = 0,96

We may wonder whether it is realistic to presume that a decision maker who controls 
maintenance policy compliance ST knows the current functionality YT. In Section 3.3.4
for example, we mentioned that corrective maintenance has been triggered by faults that 
are currently known. So, it may well be that decision makers know the current 
functionality YT in practice. Resembling the event tree in Figure 7, the number of 
possible values of the functionality YT then reduces to either up YT=1 or down YT=0.
Then, the weakened maintenance prognostic argument would better approximate reality 
than the maintenance prognostic argument while reducing the analysis burden.

This section showed that the weakened maintenance prognostic argument more 
precisely validates the maintenance policy than the maintenance prognostic argument in 
this specific case study. At least the existence of the prima facie causality in Equation
41 has existentially been confirmed when the item is known to be down YT=0. The
causal interpretation of this existential confirmation may, unlike the maintenance policy 
validation by the maintenance prognostic argument, only be overthrown by some 
unobserved background variable B.

5.4.2 Extended nonparametric argument

This section will present an alternative path graph that may reveal long-term 
functionality responses to maintenance policy compliance as the maintenance policy
validation by the nonparametric argument and the sample (s,y)[1,1976] in Section 5.3.4
only confined to a one-day-ahead prediction of functionality. Eventually, a causal effect 
of a maintenance policy is not revealed within a day.

Figure 31 specifies the non-causality assumptions of the extended nonparametric 
argument that are equivalent to those of the nonparametric argument (NPA) in Figure
11. The propositions of the extended nonparametric argument and the propositions of 
the nonparametric argument are almost identical; only KT+1 should be replaced by 
K[T+1,T+X] in Figure 15. The sampling issues are similar because the extended 
nonparametric argument similarly defines a replication by the information set 
V={lt,kt,k[t+1,t+x]} with identical {kt}. Then, it follows from Table 17 that only the 
dichotomous sample (s,y)[1,1976] is admissible to the extended nonparametric argument. 
We now proceed with a maintenance policy validation by the extended nonparametric 
argument and the sample (s,y)[1,1976] as introduced in Section 5.3.4.

Even for the dichotomous sample (s,y)[1,1976], the number of possible trajectories of 
Y[t+1,t+x] rapidly explodes as x increases. 
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Figure 31 Path graph of the extended nonparametric argument

Reconciling with the prognostic convention to operationalise prospective functionality 
by a remaining useful life (Section 3.5), we therefore similarly confine ourselves to the 
following two trajectories of Y[t+1,t+x] that appear to be most important to a decision 
maker:

[ , ] = 0,       = 0      ;  
1,       = 1      ;       96

Equation 96 reflects the prospective uptime and the prospective downtime over an 
interval [t+1,t+x] which is quantifiable by the dichotomous variable Y[T+1,T+x]. Then, 
maintenance policy compliance ST prima facie causes functionality Y[T+1,T+x] with 
respect to the information set V={st,yt,y[t+1,t+x]} by:

[.]| , [.]|0, = [.]| , [.]|1, |( , )[ , ] < ; [.] 97

Equation 97 is very similar to Equation 44, but a prospective uptime or downtime Y[.]
may be more informative for the maintenance policy validation and for practical 
decision making. 

Table 20 surveys the observed frequencies of all possible values of the information set 
V={st,yt,y[t+1,t+x]} in the sample (s,y)[1,1976]. The observed frequencies in the first row 
(x=1) implied the p-values in Table 16. The p-values for the extended information set 
V={st,yt,y[t+1,t+x]} are similarly assessable as discussed in Section 5.3.4.
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V={st,yt,y[t+1,t+x]}: (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

Observed frequency (x=1): 219 58 58 1585 29 1 1 24
Observed frequency (x=2): 184 56 34 1529 29 1 1 22
Observed frequency (x=3): 160 53 25 1474 27 1 1 22
Observed frequency (x=4): 138 51 23 1422 25 1 1 21
Observed frequency (x=5): 117 49 21 1372 24 1 1 20
Observed frequency (x=6): 100 46 20 1325 20 1 1 19
Observed frequency (x=7): 84 44 17 1279 18 1 1 19
Observed frequency (x=8): 72 44 15 1233 14 1 1 19
Observed frequency (x=9): 60 44 12 1191 13 1 1 15
Observed frequency (x=10): 55 42 6 1151 11 1 1 11
Observed frequency (x=11): 51 40 6 1111 8 1 1 9
Observed frequency (x=12): 47 38 4 1071 7 1 1 9
Observed frequency (x=13): 42 37 4 1032 7 1 1 9
Observed frequency (x=14): 38 37 4 995 7 1 0 7
Observed frequency (x=15): 34 36 4 957 7 1 0 7
Observed frequency (x=16): 31 36 3 919 7 1 0 7
Observed frequency (x=17): 28 35 3 882 7 0 0 7
Observed frequency (x=18): 25 32 3 848 7 0 0 7

Table 20 Contingency table of V={st,yt,y[t+1,t+x]}

Let prospective uptime in Equation 96 be a “win”. Then, Figure 32 depicts the observed 
proportions of this “win” for every possible element of the sample space {st,yt} claimed 
by proposition P3 in the extended nonparametric argument. Figure 32 also shows the p-
values to identify the significance of the difference in these proportions as explained in 
Section 5.3.4. The right-hand graph in Figure 32 shows that maintenance policy 
compliance ST may well be independent from prospective uptime when YT=0, i.e. the 
item is down, because significance levels are above =0,01. The sample (s,y)[1,1976]
therefore existentially refutes prima facie causality by Equation 97.

Figure 32 Prospective uptime, given {st,yt}

Alternatively, let prospective downtime in Equation 96 be a “win”. Then, Figure 33
depicts the observed proportions of this “win” for every possible element of the sample 
space of the body of knowledge U={st,yt}. Figure 33 also shows the p-values to identify 
the significance of the difference in these proportions as explained in Section 5.3.4. The 
right-hand graph in Figure 33 shows that maintenance policy compliance ST may well 
be independent from prospective downtime when YT=1, i.e. the item is up, because 
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significance levels are above =0,01. The sample (s,y)[1,1976] therefore existentially 
refutes prima facie causality by Equation 97.

Figure 33 Prospective downtime, given {st,yt}

In conclusion, a maintenance policy validation by the nonparametric argument and the 
sample (s,y)[1,1976] existentially supports the claims that:

Maintenance policy compliance ST does not prima facie cause prospective
uptime with respect to the information set V={st,yt,y[t+1,t+x]} when x is in [1,18].

Maintenance policy compliance ST does not prima facie cause prospective
downtime with respect to the information set V={st,yt,y[t+1,t+x]} when x is in 
[1,18].

Still, we may wonder whether a decision maker who controls maintenance policy 
compliance ST is unaware about the item’s current functionality YT. In Section 3.3.4, we 
mentioned for example that corrective maintenance has been triggered by faults that are 
currently known. So, it may well be that decision makers do know the current YT in 
practice. Resembling the event tree in Figure 7, the number of possible values of YT
then reduces to either up YT=1 or down YT=0 and our position regarding prima facie 
causality may change. If the item is known to be up YT=1 at the moment that ST is being 
controlled, the right-hand graph in Figure 32 can be neglected.

Then, we may assert at a significance level =0,01:

If the item is known to be up, maintenance policy compliance ST would prima 
facie cause remaining uptime with respect to the information set
V={st,yt,y[t+1,t+x]} when x is in [1,18].

If the item is known to be down YT=0 at the moment that ST is being controlled, the 
right-hand graph in Figure 33 can be neglected.
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Then, we may assert at a significance level =0,01:

If the item is known to be down, maintenance policy compliance ST would prima 
facie cause remaining downtime with respect to the information set 
V={st,yt,y[t+1,t+x]} when x is in [1,18].

In addition, the observed proportions in the left-hand graphs of Figure 32 and Figure 33
indicate the direction of the causality. Maintenance policy compliance ST=0 extends 
remaining uptime and it shortens remaining downtime.

This section showed that knowledge about the item’s current functionality YT at the 
moment of controlling ST determines our attitude towards the prima facie causality by 
Equation 97. Given a known current functionality YT, a maintenance policy validation 
by the extended nonparametric argument and the sample (s,y)[1,1976] would existentially 
confirm the prima facie causality between maintenance policy compliance ST and 
prospective functionality Y[.]. The extended nonparametric argument improved the 
inference precision of the nonparametric argument by revealing long-term functionality 
responses to maintenance policy compliance ST.

5.4.3 Reduced nonparametric argument

This section will present an alternative path graph that admits all candidate samples to 
the nonparametric argument. 

CANDIDATE 
CAUSE 

LT

FUNCTIONALITY

KT+1

B

Information set V={lt,kt+1}

Figure 34 Path graph of the reduced nonparametric argument

This allows us to compare the candidate samples on their inference precision. In Section
5.3.2, we already validated the maintenance policy by the maintenance prognostic 
argument and all candidate samples, but the AIC scores only held for a specific 
candidate sample. This obstructed a comparison across samples. In this section, we will 
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just pursue this mutual comparison of the candidate samples (and not a further 
improvement of the inference precision as such).

Figure 34 specifies the non-causality assumptions of the reduced nonparametric 
argument that, as opposed to those of the nonparametric argument (NPA) in Figure 11,
conceive functionality KT as an unknown and independent background variable B. The 
propositions of the reduced nonparametric argument and the propositions of the 
nonparametric argument are almost identical; only KT should be omitted in Figure 15.
In Section 4.4.3, we already explained that the nonparametric argument required a less 
precise categorical quantification of functionality KT to existentially confirm the prima 
facie causality in Equation 41. However, the information set of the reduced 
nonparametric argument delimits to V={lt,kt+1} as shown in Figure 34. Then, a 
replication could also be conceived as any information set V={lt,kt+1} and following a 
similar reasoning as expounded in Section 4.4.3, the requirement of a constant {kt} in a 
replication V={lt,kt+1} becomes superfluous. As a result, all candidate samples become 
potentially admissible to the reduced nonparametric argument.

The non-causality assumptions in Figure 34 indicate that the reduced nonparametric 
argument presumes independence between maintenance policy compliance LT and 
functionality KT+1. To test for this independence, the sample (l,k)[1,t] should still 
comprise sufficient different values of maintenance policy compliance LT to 
existentially confirm a null response in functionality KT+1. The observed frequencies of 
the various values of maintenance policy compliance in Figure 27 already confirmed 
that the cardinal samples (d,y)[1,70] and (d,q)[1,1977] comprise different values of 
maintenance policy compliance. So, the cardinal samples (d,y)[1,70] and (d,q)[1,1977]
appear to be indeed admissible to the nonparametric argument in this specific case 
study. Of course, the dichotomous sample (s,y)[1,1976] was already admissible as 
indicated in Table 17.

In the remainder of this section, we will present the maintenance policy validation by 
the reduced nonparametric argument by the candidate samples (d,y)[1,70], (d,q)[1,1977] and 
(s,y)[1,1976] and we compare these validations on their inference precision. This 
maintenance policy validation will assess the following prima facie causality:

| ( | ) = ( ) |( , )[ , ] <  ; ( ) 98

For the sample (d,y)[1,70], an inference of a claim regarding the prima facie causality in 
Equation 98 by the reduced nonparametric argument may proceed as follows:

Let NU be the observed frequency of U={dm}={2} in the sample (d,y)[1,m-1], i.e. NU=4;
Let NU’ be the observed frequency of the complement of U, i.e. NU’=65;
Let a “win” for the sample (d,y)[1,70] be defined by “all values of YM+1 equal or below a 
particular threshold value ym+1” as shown in:

=  ; " ">  ; " "               ( , )[ , ] 99
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Let KU be the observed frequency of V={U,”win”} in the sample (d,y)[1,m], i.e. KU
ranges from 0 to 4;
Let KU’ be the observed frequency of V={U’,”win”} in the sample (d,y)[1,m], i.e. KU’
ranges from 0 to 65;
Then, K=KU+KU’ ranges from 0 to 69 and N=NU+NU’=69.
Let presumption P5, P7 be true. Note that P5 is uncontroversial.

Figure 35 KU/NU, K/N and the p-value of presumed independence for (d,y)[1,m]

Then, Figure 35 existentially confirms independence between functionality and 
maintenance policy compliance at DM=2 as the difference between the observed 
proportions is not significant at an arbitrary level =0,01, i.e. the p-value always 
exceeds =0,01. As shown in Figure 27, the observed frequency of the replications NU
does not exceed four which is fairly small for any significant result. We therefore deem 
the maintenance policy validation by the reduced nonparametric argument and the 
sample (d,y)[1,70] as indecisive about the prima facie causality in Equation 98. We 
therefore conclude:

Maintenance policy compliance DM may or may not prima facie cause 
functionality M+1 with respect to the information set V={dm, m+1}.

For the sample (d,q)[1,t], an inference of a claim regarding the prima facie causality in 
Equation 98 by the reduced nonparametric argument may proceed as follows:

Let NU be the observed frequency of U={dt}={3} in the sample (d,q)[1,t-1], i.e. NU=114;
Let NU’ be the observed frequency of the complement of U, i.e. NU’=1860;
Let a “win” for the sample (d,q)[1,1977] be defined by “all values of QT+1 that are equal or 
below a particular threshold value qt+1” as shown in:

=  ; " ">  ; " "                 ( , )[ , ] 100

Let KU be the observed frequency of V={U,”win”} in the sample (d,q)[1,t], i.e. KU ranges 
from 0 to 114;
Let KU’ be the observed frequency of V={U’,”win”} in the sample (d,q)[1,t], i.e. KU’
ranges from 0 to 1860;
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Then, K=KU+KU’ ranges from 0 to 1975 and N=NU+NU’=1975.
Let presumption P5, P7 be true. Note that P5 is uncontroversial.

Figure 36 KU/NU, K/N and the p-value of presumed independence for (d,q)[1,t]

Then, Figure 36 existentially refutes independence between functionality and
maintenance policy compliance at DT=3 as the difference between the observed 
proportions is significant at an arbitrary level =0,01. However, the observed 
proportions in Figure 36 indicate that the distributions of functionality QT+1 differ in 
shape rather than in expectation. So, a short queue of delayed maintenance DT=3 
appears to reduce the variation in functionality QT+1 rather than to change the mean of 
functionality QT+1. Still, the maintenance policy validation by the reduced 
nonparametric argument and the sample (d,q)[1,1977] existentially confirms the prima 
facie causality in Equation 98. We therefore conclude:

Maintenance policy compliance DT prima facie causes functionality QT+1 with 
respect to the information set V={dt,qt+1}

For the sample (s,y)[1,1976], we just duplicate the inference of a prospective uptime and a 
prospective downtime in Section 5.4.2 to also reveal eventual long-term effects. This 
maintenance policy validation then transforms the prima facie causality in Equation 98
to:

[ , ]| [ , ]|0 = [ , ]| [ , ]|1 < ;[ , ] 101

Equation 101 just reduces to Equation 98 as Y[T+1,T+X] reduces to YT+1, i.e. X=1.

The left-hand side in Figure 37 existentially refutes independence between maintenance 
policy compliance at ST and prospective uptime as the difference between the observed 
proportions is significant at an arbitrary level =0,01. The observed proportions indicate 
that maintenance policy compliance (ST=0) tends to extend prospective uptime.

The right-hand side in Figure 37 existentially refutes independence between 
maintenance policy compliance at ST and prospective downtime as the difference 
between the observed proportions is again significant at an arbitrary level =0,01. The 
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observed proportions indicate that maintenance policy compliance (ST=0) tends to 
shorten prospective downtime.

Figure 37 Prospective uptime (left) and downtime (right) given {st}

Therefore, the maintenance policy validation by the reduced nonparametric argument 
and the sample (s,y)[1,1976] existentially confirms the prima facie causality in Equation
101. We therefore conclude:

Maintenance policy compliance ST prima facie causes prospective uptime with 
respect to an information set V={st,y[t+1,t+x]} for x in [1,18].

Maintenance policy compliance ST prima facie causes prospective downtime 
with respect to an information set V={st,y[t+1,t+x]} for x in [1,18]. 

Although the p-values in Figure 37 are substantially lower than the corresponding p-
values in Figure 32 and Figure 33, this maintenance policy validation by the reduced 
nonparametric argument and the sample (s,y)[1,1976] should not be seen as more precise. 
The proportions in the left and right-hand graph in Figure 32 and Figure 33 suggested a
strong dependence between YT and Y[T+1,T+x]. It is hard to accept an information set V 
that excludes a known variable (like YT) that is also known to be strongly dependent.

This section compared the maintenance policy validations by the reduced nonparametric
argument and the samples (d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976]. These samples have all 
been deduced from the same recording routines. Again, the case organisation’s 
convention to maintenance performance (d,y)[1,70] led to an indecisive result that was
attributable to the low observed frequencies of the replications. The samples (d,q)[1,1977]
and (s,y)[1,1976] existentially confirmed a prima facie causality between maintenance 
policy compliance and functionality at a significance level =0,01. Still, the 
maintenance policy validation by the reduced nonparametric argument and the sample 
(s,y)[1,1976] appeared to be most compelling for the prima facie causality in Equation 98
as it attained the lowest p-values. Possibly, the sample (d,q)[1,1977] would have attained 
lower p-values at some other, but less frequently observed value of maintenance policy 
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compliance DT (Figure 27). Clearly, this additional analysis effort to eventually test for 
the prima facie causality in Equation 98 at other observed values of maintenance policy 
compliance DT is omissible in the case of the sample (s,y)[1,1976]. Moreover, the sample 
(s,y)[1,1976] also provided an insight into long-term functionality responses to 
maintenance policy compliance that seemed less obviously attainable in the case of the 
sample (d,q)[1,1977]. In conclusion, the maintenance policy validation by the reduced 
nonparametric argument and the sample (s,y)[1,1976] was the most precise whilst
requiring less of an analysis effort and giving better insight into the long-term effects.

5.5 Findings regarding the “universal argument” inference objective

Ideally, scientific arguments hold universally, but in practice an operating organisation 
only has a stratified sample of recording routines available. If we could presume that an 
argument holds irrespective of any background variable B like in the maintenance 
optimisation argument (MOA in Figure 11), we might still universally refute the 
argument by a stratified sample as we did in Section 5.3.1. All other arguments did 
specify some independence between LT, B or KT, B (Figure 11, Figure 30 and Figure 
31) that remained unassessible. These presumptions of independence were essential to 
interpret an existentially inferred claim regarding the prima facie causality in Equation
41 as being causal. However, confounding or mediating background variables B almost 
certainly exist but we are simply unable to even enumerate them all, nor can we
presume equality of their distributions due to random assignment of treatments. The
maintenance policy validation therefore remains vulnerable to these background
variables B.

In this section, we will capture some of the suspicions from a field expert about sample 
bias and we will verify the recording routines underlying the candidate samples with 
some in-depth knowledge about the case study. The magnitude of these concerns is 
unassessible from the evidence available. A split sample validation may reveal time-
dependent behaviour and it may reveal an efficiency improvement; i.e. the applicability 
of the maintenance policy validation benefits from an ability to infer similar results 
from a shorter time series sample (l,k)[1,t].

5.5.1 Background variables influencing functionality

The functionality in the case study has been built on a physical variable from an 
instrument that has not been subject to known calibration issues. We are therefore 
unaware of known and avoidable background variables that biased the evolution of 
functionality K. However, a field expert suspected that maintenance policy compliance
L is not regarded as a dominant cause of functionality K. This suspicion implies that 
maintenance policy compliance L may not be an attractive element of the body of 
knowledge U to predict functionality K. The possible presence of unobserved 
background variables B potentially heavily biased the maintenance policy validation.
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5.5.2 Background variables influencing maintenance policy compliance

It would be quite naïve to presume that all members in the queue of delayed 
maintenance equally attribute to functionality. The composition of the queue is therefore 
another suspected cause of functionality. The maintenance recordings usually include
additional information which will allow refined removal factors. For example, in this 
case study we could have specified the queue by discipline (electrical, mechanical,…), 
by the item’s involved components, by job type (preventive, corrective,…) or by 
urgency. Eventually, it reveals that some modified queue much more strongly prima 
facie causes functionality. For a decision maker, it may also be more appropriate to only 
manipulate some subset of the maintenance policy. So, it could be worthwhile to 
implement additional removal factors and to infer the associated (prima facie) causality. 
This extension potentially identifies the most influential maintenance policy violations.
As long as the refreshment of the queue suffices, these extensions are possible. In this
work, however, we seek for a generic justifiability of maintenance. Then, these removal 
factors would appear as additional antecedents in the argument that require model 
parameters or sufficient replications. We therefore initially ignored the evidence that 
enables further partitioning of the queue of delayed maintenance.

The case study seems unaffected by software conversions, changed operational intents
or changes in the operating and maintenance crew during the time interval spanned by
the sample (l,k)[1,t], but this does not imply integrity of the maintenance recordings. In
the case study, a field expert suspected, for example, that there was a herding effect to 
register completions batch-wise at a “convenient time”. Indeed, the number of days with 
at least one arrival (1181) considerably exceeds the number of days with at least one 
completion (921). This finding supports the expert’s suspicion.

The case study comprised 74 transitions from a “bad” functionality (YT=0) to a “good” 
functionality (YT=1). We presume that these transitions require human intervention that 
should be seen as maintenance. However, 16 out of these 74 transitions are not 
associated with a recording of the completion of some maintenance action. It could well 
be the case that our stratified sample is incomplete or lacks integrity.

5.5.3 Split sample validation

In Section 4.5.5, we already mentioned that a sample (l,k)[1,t] comprises more 
information than the information set V={P3,P4} of the prima facie causalities that we 
explored. The candidate samples in Figure 20, Figure 21 and Figure 22 show, for 
example, some symptoms of non-stationary drifts that have not been described by the 
information set V={P3,P4}. The presumed definitions of a replication in Table 6 that we 
used in all maintenance policy validations so far are therefore problematic. So, we did 
not verify the second causality principle (Section 2.3.3), i.e. a causality remains constant 
in direction throughout time. In this section, we will implement a split sample validation 
to (i) test whether we could increase the efficiency of the maintenance policy validation 
by showing similar results from a shorter time series (l,k)[1,t] and to (ii) test whether our 
results are time dependent.
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We will only duplicate the maintenance policy validation by the nonparametric 
argument and the sample (s,y)[1,1976] while presuming knowledge about the current 
functionality YT as discussed in Section 5.4.2. A partitioning of the sample (s,y)[1,1976]
then yields Figure 38 and Figure 39, which correspond to the left-hand graphs in Figure 
32 and Figure 33 respectively.

Figure 38 Split sample validation for remaining uptime

The observed proportions in the remaining uptime for both halves in Figure 38 are 
problematic for the second causality principle (Section 2.3.3), which requires that 
causalities should remain constant in direction throughout time because during the first 
8 days, maintenance policy compliance ST=0 seems to extend remaining uptime in the 
first half and to shorten remaining uptime in the second half. However, the p-values 
indicate that this difference is insignificant. Still, maintenance policy compliance ST=0
tends to extend remaining uptime after 10 days in both halves. However, the p-values 
have grown to barely acceptable values. An existential confirmation of the dependence
between ST and Y[.] by Figure 38 at an arbitrary significance level =0,01 has become 
barely tenable. We therefore posit that we cannot improve the efficiency of the
maintenance policy validation by reducing the time series by half.

Figure 39 Split sample validation for remaining downtime
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The trends in the remaining downtime for both halves in Figure 39 are also similar.
Again maintenance policy compliance ST=0 tends to shorten remaining downtime. 
However, the p-values have grown to barely acceptable values. An existential 
confirmation of the dependence between ST and Y[.] by Figure 39 at an arbitrary 
significance level =0,01 has become barely tenable. We therefore posit that we cannot 
improve the efficiency of the maintenance policy validation by reducing the time series 
by half.

Still, the difference between the observed proportions in Figure 38 shows that the 
remaining uptime tends to shorten upon ST=1 after about 10 days in both halves.
Similarly, the difference between the observed proportions in Figure 39 shows that 
remaining downtime tends to extend upon ST=1 during the first 10 days in both halves. 
So, although the differences in the observed proportions in Figure 38 and Figure 39 are 
barely significant, they are not problematic for the second causality principle which
requires that a causality remains constant in direction throughout time.

Figure 40 Split sample validation for stationarity

This does not mean that the split sample validation would support stationarity of the 
sample (s,y)[1,1976]. We therefore alternatively tested for independence of uptimes and 
downtimes across halves. Figure 40 just depicts the p-values since the corresponding 
proportions have already been depicted in Figure 38 and Figure 39. Figure 40 shows 
that the presumption of stationarity has been refuted at an arbitrary significance level

.It can therefore be concluded that:
- Given U={st,yt}={0,0}, the proportions in Figure 39 indicate that remaining 

downtime in the second half is significantly shorter ( =0,01);
- Given U={st,yt}={0,1}, the proportions in Figure 38 indicate that remaining 

uptime in the second half is significantly shorter ( =0,01).
Since we do not believe that membership of a particular half on its own caused this non-
stationarity, Figure 40 triggers a quest for background variables.

In this section, we surveyed some expert suspicions regarding background variables that 
could bias the maintenance policy validation applied to the case study. We also showed 
that we only selectively used the information from the recording routines of the case 
organisation. This information allows for extensions to more refined compositions of 
the maintenance queue. The outcome of the split sample validation was not problematic 
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for the second causality principle, but it showed some symptoms of non-stationarity in 
the sample (s,y)[1,1976]. Since time in itself is unlikely to explain this non-stationarity, it
can be concluded that the inference precision suffers from background variables. 
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6 Discussion

This section will survey and critically discuss our achievements with respect to an 
improved inference. We will organise them along the choices in Table 2, i.e. the choice 
of an argument, of an operationalisation and of a sampling procedure. The structured 
approach along these choices is original and allowed us to compare a number of 
arbitrarily selected options. Moreover, it allowed us to propose a way to quantify the 
precision of a causal inference. Although this quantification could be considered to be 
based on common sense, it has not been described precisely in scientific literature 
before. In the next subsections, for each of these choice problems, the contribution of 
the present work will be stated.

6.1 Choice of an argument

An argument is an essential vehicle for our reasoning. We considered several arguments 
that differ in structure and potentially also in inference precision. This section will 
survey our achievements regarding the choice of an argument.

6.1.1 Main findings

We have constructed a set of candidate arguments that differ in their presumptions. In 
Table 5, we preliminarily compared these candidate arguments on their inference 
precision and in Section 5.3, we confronted these candidate arguments with the samples 
(d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976] from a realistic case study. Table 21 now surveys 
our definite findings regarding the inference objectives for this specific case study. 

Table 21 generally confirms the preliminary assessment of inference precision in Table 
5. To serve the aim of this work, we now survey what the candidate arguments, given 
their inference precision in the case study, assert about the causality between 
maintenance policy compliance and functionality.

The maintenance optimisation argument has universally been refuted. This refutation 
applies only to a very specific (definitional) equivalence of functionality and 
maintenance policy compliance that is more coercive than a (prima facie) causality. 
Only a confirmation of the maintenance optimisation argument would have been 
decisive for the prima facie causality between maintenance policy compliance and 
functionality.

If the maintenance prognostic argument were sound, it would have been very 
compelling for the prima facie causality between maintenance policy compliance and 
functionality because its model M2 eventually maps maintenance policy compliance to 
an estimate of prospective functionality. For prospective decision making about a yet to 
be observed future, a sound maintenance prognostic argument would have been 
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appreciable for its predictive capabilities to make beyond sample claims. Unfortunately, 
any sample (l,k)[1,t] collected by observational research appeared insufficient to establish 
the soundness of the maintenance prognostic argument. We therefore resorted to an 
existential claim about the expected information loss of some arbitrarily presumed 
model. Only for the sample (s,y)[1,1976] could we compose a finite set of candidate model 
families that were uncontroversial if a replication would reduce to some subset of the 
information set V like in a prima facie causality. So, only for the sample (s,y)[1,1976] did 
the maintenance prognostic argument become decidable in terms of AIC scores.
Although the AIC scores only compared candidate models on their expected 
information loss when approximating functionality YT+1, we ultimately concluded that 
the maintenance policy validation by the maintenance prognostic argument and the 
sample (s,y)[1,1976] was also decidable about a prima facie causality.

Maintenance 
optimisation 
argument 
(Section 4.1)

Maintenance 
prognostic 
argument 
(Section 4.2)

Reliability 
engineering 
argument
(Section 4.3)

Nonparametric 
argument 
(Section 4.4)

Valid argument Yes Yes Yes Yes

Functional 
relation

Yes Yes Yes Yes

Common sense 
evidence

L,K incomplete
L,K subjective

L,K incomplete
L,K subjective

L,K incomplete
L,K subjective

L,K incomplete
L,K subjective

Universal 
argument

Yes, but refuted No No No

Decidable 
Argument

Yes Only in AIC for 
(s,y)[1,1976].

Only in AIC for 
(s,y)[1,1976].

Only in 
likelihood

Decidable about 
LT KT+1 w.r.t. 
{lt,kt,kt+1}

No Only in AIC for 
(s,y)[1,1976].

Only in AIC for 
(s,y)[1,1976].

Only in 
likelihood for 
(s,y)[1,1976].

Table 21 Definite inference precision of the candidate arguments

The reliability engineering argument appeared to be somewhat superfluous in this 
discussion. For the dichotomous sample, it reconciled with the maintenance prognostic 
argument and for the cardinal samples, it appeared to delimit the amount of admissible 
evidence rather than to reduce controversy about the presumptions in the maintenance 
prognostic argument.

The nonparametric argument was geared to existential claims about the likelihood of a 
presumption of independence. The nonparametric argument was most restrictive about 
the composition of the sample and only the sample (s,y)[1,1976] appeared to consist of
sufficient replications. Table 16 showed that today’s maintenance policy compliance ST
is unlikely to prima facie cause tomorrow’s functionality YT+1 but we also sought for 
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long-term effects. In Section 5.4.2, we confirmed that maintenance policy compliance 
ST=0 associates with longer remaining uptimes and shorter remaining downtimes. 
Provided that the current functionality YT is known, this association would also imply a 
prima facie causality between maintenance policy compliance and functionality.

Furthermore, the nonparametric argument is appreciable for (i) the computational 
efficiency, i.e. not all candidate models should be assessed as required for a 
maintenance policy validation by the maintenance prognostic argument (Table 11), (ii)
its potential to compare different samples at a reduced information set V={lt,kt+1} like 
we did in Section 5.4.3, (iii) its ability to quantify its ambiguity about a prima facie 
causality by a likelihood whereas the AIC and AICc scores in Section 5.3.2 only 
compared models on expected information loss when approximating functionality KT+1,
(iv) its ability to both existentially confirm and existentially refute the prima facie 
causality in Equation 41 and (v) its more compelling causal interpretation upon an 
existential confirmation of the prima facie causality in Equation 41, whereas the 
maintenance prognostic argument and the reliability engineering argument would then 
require an additional test for independence between LT and KT.

Therefore, the nonparametric argument became our argument of choice in the case 
study.

6.1.2 Our contribution regarding the argument selection

The challenge of the argument selection was:

To achieve inference precision by choosing an adequate argument.

This iterative quest for an argument may be seen as just another instantiation in the
choice of some prognostic or diagnostic argument. The candidate arguments in this 
work covered various approaches like analytical redundancy by the maintenance 
optimisation argument, a model based approach by the maintenance prognostic 
argument, a history based approach by the nonparametric argument and some hybrid 
reliability engineering argument. The influence of categorical and cardinal samples on 
the choice of an argument is similarly well explored by conventional diagnostics and 
prognostics. Still, we consciously sought for a causal argument whereas diagnostic and 
prognostic conventions often effectively reason about physical symptoms. This work 
may be seen as an initial step to explore causal inferences in a maintenance decision 
making context. As the amount of recording routines that could support maintenance 
decision making seem to be growing, causal inferences under observational research 
constructs that seem well explored in other fields could potentially become important 
here. Finally, we critically compared the candidate arguments on inference precision to 
arrive at an argument of choice in a specific case. This practice of empirical science is 
transferrable to other cases in principle. In summary:

We have implemented a maintenance policy validation by a causal argument and a 
sample from a realistic case study at an improved inference precision.
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6.2 Choice of an operationalisation

Inference precision heavily relies on the evidence we are willing to accept as true. To 
mitigate controversy, we sought for common sense. To validate a presumption 
regarding causality of maintenance policy compliance and functionality, we needed
common sense about three aspects:

- Maintenance policy compliance;
- Functionality;
- Causality.

In this section, we will summarise and discuss our achievements regarding the 
operationalisation of these three aspects.

6.2.1 Main findings

The literature review on normative decision theory did not appear to be very 
encouraging for policy validations since the assessment of an individual’s preference is 
problematic. Decisions to carry out maintenance usually happen in some organisation
which is a choice to collaborate. To enable group members to align with the 
organisation’s goals, maintenance performance indicators appear to be helpful. We 
therefore proposed to depart from this common sense about the organisation’s goals of a 
maintenance policy.

Although an intuition exists that leading performance indicators (maintenance policy 
compliance) cause lagging performance indicators (functionality), we found that 
conventional maintenance scorecards do not really accommodate causal inferences. This 
might explain why we did not find any attempt to do so in the literature.

Our major and partly unresolved concern is the operationalisation of causality. Given 
the constraint on an observational research, we were unable to find a common sense 
operationalisation of causality. Still, we posited common sense about three causality 
principles that we tried to address in the candidate arguments:

- The past and present may cause the future, but the future cannot cause the past. 
This causality principle has been addressed by collecting a time series sample 
(l,k)[1,t] and presumption P5 that asserts that future functionality KT+1 could 
never have caused current maintenance policy compliance LT.

- All causal relationships remain constant in direction throughout time. This 
causality principle has only been addressed by the split sample validation in 
Section 5.5.3. Although the second causality principle was not directly 
problematic, we clearly revealed some non-stationarity concerns.

- A cause comprises unique information about the effect that is not available 
otherwise. This causality principle could not be addressed by the obvious choice 
of random assignment of treatments. We therefore resorted to a modest notion of 
prima facie causality that we enhanced with quantifiers. These quantifiers 
appeared to be very useful in comparing the inference precision of a 
maintenance policy validation by the candidate arguments and samples. 

The causality principles are meant to hold universally. We have similarly been explicit 
about the universal but controversial presumptions of the candidate arguments that were 
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needed to make a universal claim from a spatiotemporally constrained sample (l,k)[1,t].
Except for the maintenance optimisation argument that was essentially not a causal 
argument, the other candidate arguments only allowed for existential claims regarding 
prima facie causality.

The recording routines of the case study were not predominantly affected by
background variables like software conversions or reorganisations. The case study was 
therefore quite advanced in terms of influences from background variables. 
Furthermore, we ignored some lagging indicators on cost control, on resource allocation 
and on health, safety and environment in the case study. By just confining to 
functionality, we have been incomplete about the case organisation’s goals of the 
maintenance policy. To alleviate this concern, we implemented a removal factor on the 
maintenance policy compliance variable which, in hindsight, would not have altered our 
result.

In the case study, we did not recognise calibration issues in the recordings of the 
physical variable (output) which represented functionality. The objective to maximise 
output did not seem to be controversial either. The maintenance policy compliance 
variable was built on a queue of delayed maintenance. We noticed some ambiguity in 
the perception of a delay since an individual field expert did not always agree with the 
case organisation’s definition. We just chose to follow the case organisation’s 
convention. Furthermore, we found some symptoms of human factor bias in the 
maintenance policy compliance recordings of unknown magnitude.

Finally, we tested for a prima facie causality that did not capture all information in the 
sample (l,k)[1,t] of the case study. A split sample test confirmed some non-stationary 
drifts that allude to effects from background variables which potentially reduce the 
inferred prima facie causality to spurious (Figure 5). Still, the split sample validation 
was not really problematic for the second causality principle which asserts that a 
causality should remain constant in direction throughout time.

6.2.2 Our contribution regarding the operationalisation

The challenge of an operationalisation was:

To achieve inference precision by establishing common sense about the evidence.

This work addressed the challenge to observe the effects of decisions in an 
organisation’s recording routines. Maintenance policies appeared to be suitable for an 
empirical validation because they trigger decisions at a high rate and because the 
abundant policy violations are typically also recorded. An attempt to use violations to 
get a glimpse into the counterfactual reality appears to be new from a normative 
decision theoretical perspective. We realise that maintenance cases allow for this
research construct that is atypical in normative decision theory. 

Common sense is not enforceable. So, we merely critically compared the case 
organisation’s common sense about its subjective goals of a maintenance policy with 
literature conventions and field expert judgement. However, it ultimately remains a 
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matter of personal taste to accept or reject our proposed operationalisation of 
maintenance policy compliance and functionality. 

We pioneered a modest notion of prima facie causality in a maintenance decision 
making context. We added quantifiers to Granger’s (1980) original definition of a prima 
facie causality to be more precise about its assessment. These quantifiers revealed that 
the sample space of the information set V is decisive for the assessment of a prima facie 
causality, as we conceptually showed in Figure 7. In Section 5.4.2, we existentially 
confirmed a prima facie causality between maintenance policy compliance and 
prospective functionality, provided that the current functionality is known. This 
delimitation of the possible values in the information set V by common sense may 
similarly enhance our ability to observe and meaningfully use prima facie causalities in 
other cases as well. In summary:

We have implemented a maintenance policy validation based on evidence about policy 
violations that appears to be new from a normative decision theoretical perspective.

6.3 Choice of a sampling procedure

The sampling procedure determines inference precision by both its influence on the 
acceptance of causality and the efficiency of collecting evidence. In this section, we will 
survey our achievements regarding the choice of the sampling procedure.

6.3.1 Main findings

We found that precision of causal inferences highly benefits from experimental research 
that allows for random assignment of treatments. Since we confined ourselves to 
evidence about recording routines, the resulting sampling procedure is not optimal.
Nevertheless, many organisations apparently have loads of recording routines that 
potentially contain valuable knowledge. The choice of this observational research 
construct therefore contributes to the practical applicability of the causal inference.

A survey revealed that conventional maintenance performance indicators are typically 
geared to show posterior satisfaction of goals. For decisions that only influence the yet 
to be observed future, predictive capabilities would be desirable. We have not found any 
organisation that inferred predictive models from its maintenance performance 
indicators.

We found that conventional maintenance performance indicators do not really allow for 
causal inferences that enable maintenance performance predictions. We derived and 
implemented some construction rules to adjust them and we revealed a major 
improvement in our predictive capabilities using a typical realistic case study. So, the 
case organisation (and other organisations with similar performance indicators) could 
potentially learn more from its recording routines.

We also compared a dichotomous sample (s,y)[1,1976] with a cardinal sample (d,q)[1,1977].
Although the dichotomous sample is a less precise quantification, we showed its merits 
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in terms of sampling efficiency and in terms of tenable presumptions for the candidate
causal arguments. In Section 5.4.3, we compared the inference precision of the 
maintenance policy validation by the nonparametric argument and the candidate
samples (d,y)[1,70], (d,q)[1,1977] and (s,y)[1,1976]. Clearly, the sample (s,y)[1,1976] yielded the 
highest inference precision, i.e. lowest p-values, while enabling claims about an interval 
rather than just one-step-ahead. Therefore, the sample (s,y)[1,1976] became our sample of 
choice.

6.3.2 Our contribution regarding the sampling procedure

The challenge of the selection of a sampling procedure was:

To achieve inference precision by composing a suitable sample, given the constraint 
on an observational research.

We pioneered the redesigning of a maintenance scorecard which allows for causal 
inferences that are essential for maintenance performance predictions. We therefore put 
forward some construction rules that (i) comply with the practice of multiple criteria 
decision making (ii) respect the subjective goals to be measured by the maintenance 
performance indicators and (iii) are straightforwardly implementable on typical 
recording routines. We have constructed two alternative samples in the case study that 
respected these construction rules and we showed that both of these alternative samples 
outperformed the case organisation’s convention to maintenance performance. Since the 
case organisation’s convention to maintenance performance is rather typical, it is 
expected that other organisations may similarly benefit from the proposed construction 
rules. In summary:

We have implemented alternatives for conventional maintenance performance 
indicators that enable more precise causal inferences in the case study.
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7 Conclusion

7.1 Maintenance is unjustifiable; an improved inference

The proposition “maintenance is unjustifiable” obstructs the justification of 
maintenance. In this work, we were looking for an improved inference that would 
enhance the justifiability of maintenance. We stuck to a quest for an inference that is 
more precise about the proposition:

Maintenance policy compliance causes functionality

We have implemented a policy validation which relies on policy compliance that 
appeared to be unconventional from a normative decision theoretical perspective where 
“choosing” and “doing” coincide and correspond. A maintenance policy appeared to be 
suitable for such a validation since it triggers decisions at a high rate and the abundant 
maintenance policy violations are typically also recorded. Policy violations may reveal 
the counterfactual reality which maintenance policy compliance intends to avoid in the 
first place.

As anticipated, we failed to be precise in the operationalisation, the sampling and the 
argument:

- Although we operationalised maintenance policy compliance and functionality 
by common sense and we pioneered a modest notion of prima facie causality in 
a maintenance decision making context, we failed to be complete in our 
operationalisation and we recognised some concerns regarding background 
variables that are problematic for causal explanations of the observed 
associations.

- Although we demonstrated how the sampling of maintenance performance 
indicators could better enable causal inferences that are essential in deciding
about the future, we failed to apply a well-designed experimental research that 
would have been more compelling for a causality. This sampling constraint 
applies to many operating organisations that typically only have recording 
routines about maintenance performance available.

- Although we constructed several causal arguments, we resorted to just an 
existential claim regarding some presumed prima facie causality.

In a practical case study, we showed that maintenance policy compliance ST prima facie 
causes functionality Y[T+1,T+x] with respect to the information set V={st,yt,y[t+1,t+x]}
provided that the current functionality YT is known. Then, maintenance policy 
compliance prima facie causes longer remaining uptimes and shorter remaining 
downtimes. Since the case organisation’s approach to maintenance performance 
indicators appears to be conventional, inference precision may similarly improve in 
other cases. However, the magnitude of the background variables appeared to be rather 
limited in the present case study, which might be less ideal in other cases.
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The final conclusion is thus that a maintenance policy validation by the proposed 
approach is very difficult if the only evidence available is from an organisation’s 
recording routines. This makes it difficult to obtain explicit justification. However, the 
proposed approach showed how to improve the associated inference precision in a
specific case study.

7.2 Practical implications

In this work, we merely tried to better approximate reality by an increased inference 
precision. We did not, for example, intervene in the course of operations of the 
organisation in the case study. This observer perspective, which seems unconventional 
in research on maintenance, obviously raises questions on its practical implications.

Maintenance originates from decisions that can only influence a yet to be observed 
future. Maintenance policy assessments therefore predominantly rely on expert 
judgement about the prospective future. We take the viewpoint that this prospective
future should materialise in order to retain maintenance policy assessments which are
meaningful to practitioners and empirical scientists.

This work revealed that conventional maintenance performance indicators typically do
not sufficiently capture the variations that allow us to learn about the system behaviour.
We proposed and implemented some construction rules for maintenance performance 
indicators that enabled us to reveal prima facie causalities from recording routines.

We firstly eliminated redundancy to avoid dependencies that are definitional rather than 
causal. To avoid longitudinal redundancy, we suggested instantaneously observable 
variables that allow for any convenient sampling rate. We secondly proposed to increase
the sampling rate to enable a reconstruction of the original signals. This gave insight 
into the perturbations that are informative for causality. We finally balanced 
completeness with efficiency to arrive at a meaningful but tractable inference. 

Although these construction rules appear to be straightforwardly implementable on 
recording routines, they are often violated in the practice of maintenance performance 
measurement. We therefore argue that organisations could potentially learn more about 
the causal effects of their decisions. Eventually, by validating some formal argument, 
like we did in this work, or by simply asking: “Where does this peak come from?”.

7.3 Further research

The approach of this research may be regarded as a case of satisficing. The conclusion 
therefore only existentially holds with respect to the options that we considered for the 
operationalisation, the sampling and the argument:

- Regarding the operationalisation, we could have considered another incomplete 
representation of the case organisation’s common sense or we could have 
challenged it.
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- Regarding the sampling, we could have extended the sample in various ways 
and we could have considered a sampling procedure that better approximates a 
random assignment of maintenance policy compliance treatments.

- Regarding the argument, we could have considered arguments that rely on 
neural networks or genetic algorithms and we could have explored some hybrid 
argument that merges the inferences of the arguments we did consider.

The remainder of this section will just outline some applications of this work that we are 
currently working on.

7.3.1 Predictive maintenance performance

We are currently working on the case of an organisation that is quite mature in its 
prognostic health management capabilities. Prognostic health management triggers 
decisions to carry out maintenance based on observable evidence. This could, in a 
similar way, enhance observing maintenance policy violations.

The organisation still uses conventional maintenance performance indicators which are 
hard to associate with health indicators. We propose that we can improve associating 
prognostic health information with maintenance performance indicators. 

For this endeavour, the present work gave us the experience to implement causal 
inferences on maintenance performance indicators. Our approach to inference precision 
allows us compare alternative inferences that predict functionality.

7.3.2 Data driven decision support

We are currently working on the case of an organisation that is reconsidering its 
maintenance performance indicators. This reconsideration has been triggered by an 
upgrading of the computerised maintenance management system. This investment 
should better support maintenance decision making, which implies a need to apply 
causal inferences to maintenance recordings. This work turned out to be a demonstrator 
for the construction of maintenance performance indicators.

The organisation operates a fleet that is being exposed to varying operating conditions 
affecting maintenance. We are running pilot projects to investigate whether our adjusted 
maintenance performance indicators are predictable from operating conditions.

It is too early to claim successful causal inferences, but the instantaneously observable 
performance indicators that are sampled at a high rate seem to contribute to data quality. 
They provide immediate feedback to various stakeholders while coming up with
qualitative explanations for perturbations. This side effect may mitigate the effects from 
background variables which were problematic for this research.
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